ترغب بنشر مسار تعليمي؟ اضغط هنا

Phenomenology of $keV$ sterile neutrino in minimal extended seesaw

199   0   0.0 ( 0 )
 نشر من قبل Pritam Das
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the possibility of a single generation of $keV$ scale sterile neutrino ($m_S$) as a dark matter candidate within the minimal extended seesaw (MES) framework and its influence in neutrinoless double beta decay ($0 ubetabeta$) study. Three hierarchical right-handed neutrinos were considered to explain neutrino mass. We also address baryogenesis via the mechanism of thermal leptogenesis considering the decay of the lightest RH neutrino to a lepton and Higgs doublet. A generic model based on $A_4times Z_4times Z_3$ flavor symmetry is constructed to explain both normal and inverted hierarchy mass pattern of neutrinos. Significant results on effective neutrino masses are observed in presence of sterile mass ($m_S$) and active-sterile mixing ($theta_{S}$) in $0 ubetabeta$. Results from $0 ubetabeta$ give stringent upper bounds on the active-sterile mixing matrix element. To establish sterile neutrino as dark matter within this model, we checked decay width and relic abundance of the sterile neutrino, which restricted sterile mass ($m_S$) within some definite bounds. Constrained regions on the CP-phases and Yukawa couplings are obtained from $0 ubetabeta$ and baryogenesis results. Co-relations among these observable are also established and discussed within this framework.



قيم البحث

اقرأ أيضاً

We study the possibility of simultaneously addressing neutrino phenomenology and the dark matter in the framework of inverse seesaw. The model is the extension of the standard model by the addition of two right handed neutrinos and three sterile ferm ions which leads to a light sterile state with the mass in the keV range along with three light active neutrino states. The lightest sterile neutrino can account for a feasible dark matter(DM) candidate. We present a $S_{4}$ flavor symmetric model which is further augmented by $Z_{4}times Z_{3}$ symmetry to constrain the Yukawa Lagrangian. The structures of the mass matrices involved in inverse seesaw within the $S_{4}$ framework naturally give rise to correct neutrino mass matrix with non-zero reactor mixing angle $ theta_{13}$. In this framework, we conduct a detailed numerical analysis both for normal hierarchy as well as inverted hierarchy to obtain dark matter mass and DM-active mixing which are the key factors for considering sterile neutrino as a viable dark matter candidate. We constrain the parameter space of the model from the latest cosmological bounds on the mass of the dark matter and DM-active mixing.
83 - Nayana Gautam , R. Krishnan , 2020
We study the effect of sterile neutrino on some low scale processes in the framework of minimal extended seesaw (MES). MES is the extension of the seesaw mechanism with the addition of sterile neutrino of intermediate mass. The MES model in this work is based on $Delta(96)times C_{2}times C_{3}$ flavor symmetry. The structures of mass matrices in the framework lead to $TM_{1}$ mixing with $mu text{-}tau$ symmetry. The model predicts maximal value of Dirac CP phase. We carry out our analysis to study the new physics contributions from the sterile neutrino to different charged lepton flavor violation (cLFV) processes involving muon and tau leptons as well as neutrinoless double beta decay (0$ ubetabeta$). The model predicts normal ordering (NO) of neutrino masses and we perform the numerical analysis considering normal ordering (NO) only. We find that sterile neutrino mass in GeV range can lead to cLFV processes that are within the reach of current and planned experiments. The GeV scale sterile neurtrino in our model is consistent with the current limits on the effective neutrino mass set by $0 ubetabeta$ experiments.
We construct a neutrino mass model based on the flavour symmetry group $A_4times C_4 times C_6 times C_2$ which accommodates a light sterile neutrino in the minimal extended seesaw (MES) scheme. Besides the flavour symmetry, we introduce a $U(1)$ gau ge symmetry in the sterile sector and also impose CP symmetry. The vacuum alignments of the scalar fields in the model spontaneously break these symmetries and lead to the construction of the fermion mass matrices. With the help of the MES formulas, we extract the light neutrino masses and the mixing observables. In the active neutrino sector, we obtain the $text{TM}_2$ mixing pattern with non-zero reactor angle and broken $mu$-$tau$ reflection symmetry. We express all the active and the sterile oscillation observables in terms of only four real model parameters. Using this highly constrained scenario we predict $sin^2 theta_{23} =0.545^{+0.003}_{-0.004}$, $sin delta = -0.911^{+0.006}_{-0.005}$, $|U_{e4}|^2 = 0.029^{+0.009}_{-0.008}$, $|U_{mu4}|^2 = 0.010^{+0.003}_{-0.003}$ and $|U_{tau4}|^2 = 0.006^{+0.002}_{-0.002}$ which are consistent with the current data.
We study a model of neutrino and dark matter within the framework of a minimal extended seesaw. This model is based on $A_4$ flavour symmetry along with the discrete $Z_3times Z_4$ symmetry to stabilize the dark matter and construct desired mass matr ices for neutrino mass. Five-zero textures are imposed in the final $4times4$ active-sterile mass matrix, which significantly reduces free parameter in the model. Three right-handed neutrinos were considered, two of them have nearly degenerate masses which help us to achieve baryogenesis via resonant leptogenesis. A singlet fermion (sterile neutrino) with mass $simmathcal{O}$(eV) is also considered, and we are able to put bounds on active-sterile mixing parameters via neutrino oscillation data. Resonant enhancement of lepton asymmetry is studied at TeV scale, where we discuss a few aspects of baryogenesis considering the flavour effects. Possibility of improvement in effective mass from $0 ubetabeta$ in the presence of a single generation of sterile neutrino flavour is also studied within the fermion sector. In the scalar sector, the imaginary component of the complex singlet scalar is behaving as a potential dark matter candidate and simultaneously the real part of the complex scalar is associated with the fermion sector for sterile mass generation. A broad region of dark matter mass is analyzed from various annihilation processes, and the VEV of the complex scalar plays a pivotal role to achieve the observed relic density at the right ballpark.
Motivated by the recent resurrection of the evidence for an eV scale sterile neutrino from the MiniBooNE experiment, we revisit one of the most minimal seesaw model known as the minimal extended seesaw that gives rise to a $3+1$ light neutrino mass m atrix. We consider the presence of $A_4$ flavour symmetry which plays a non-trivial role in generating the structure of the neutrino mass matrix. Considering a diagonal charged lepton mass matrix and generic vacuum alignments of $A_4$ triplet flavons, we classify the resulting mass matrices based on their textures. Keeping aside the disallowed texture zeros based on earlier studies of $3+1$ neutrino textures, we categorise the remaining ones based on texture zeros, $mu-tau$ symmetry in the $3times3$ block and hybrid textures. After pointing out the origin of such $3+1$ neutrino textures to $A_4$ vacuum alignments, we use the latest $3+1$ neutrino oscillation data and numerically analyse the texture zeros and $mu-tau$ symmetric cases. We find that a few of them are allowed from each category predicting interesting correlations between neutrino parameters. We also find that all of these allowed cases prefer normal hierarchical pattern of light neutrino masses over inverted hierarchy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا