ﻻ يوجد ملخص باللغة العربية
We explore the possibility of a single generation of $keV$ scale sterile neutrino ($m_S$) as a dark matter candidate within the minimal extended seesaw (MES) framework and its influence in neutrinoless double beta decay ($0 ubetabeta$) study. Three hierarchical right-handed neutrinos were considered to explain neutrino mass. We also address baryogenesis via the mechanism of thermal leptogenesis considering the decay of the lightest RH neutrino to a lepton and Higgs doublet. A generic model based on $A_4times Z_4times Z_3$ flavor symmetry is constructed to explain both normal and inverted hierarchy mass pattern of neutrinos. Significant results on effective neutrino masses are observed in presence of sterile mass ($m_S$) and active-sterile mixing ($theta_{S}$) in $0 ubetabeta$. Results from $0 ubetabeta$ give stringent upper bounds on the active-sterile mixing matrix element. To establish sterile neutrino as dark matter within this model, we checked decay width and relic abundance of the sterile neutrino, which restricted sterile mass ($m_S$) within some definite bounds. Constrained regions on the CP-phases and Yukawa couplings are obtained from $0 ubetabeta$ and baryogenesis results. Co-relations among these observable are also established and discussed within this framework.
We study the possibility of simultaneously addressing neutrino phenomenology and the dark matter in the framework of inverse seesaw. The model is the extension of the standard model by the addition of two right handed neutrinos and three sterile ferm
We study the effect of sterile neutrino on some low scale processes in the framework of minimal extended seesaw (MES). MES is the extension of the seesaw mechanism with the addition of sterile neutrino of intermediate mass. The MES model in this work
We construct a neutrino mass model based on the flavour symmetry group $A_4times C_4 times C_6 times C_2$ which accommodates a light sterile neutrino in the minimal extended seesaw (MES) scheme. Besides the flavour symmetry, we introduce a $U(1)$ gau
We study a model of neutrino and dark matter within the framework of a minimal extended seesaw. This model is based on $A_4$ flavour symmetry along with the discrete $Z_3times Z_4$ symmetry to stabilize the dark matter and construct desired mass matr
Motivated by the recent resurrection of the evidence for an eV scale sterile neutrino from the MiniBooNE experiment, we revisit one of the most minimal seesaw model known as the minimal extended seesaw that gives rise to a $3+1$ light neutrino mass m