ﻻ يوجد ملخص باللغة العربية
In this note, we consider special algebraic cycles on the Shimura variety S associated to a quadratic space V over a totally real field F, |F:Q|=d, of signature ((m,2)^{d_+},(m+2,0)^{d-d_+}), 1le d_+<d. For each n, 1le nle m, there are special cycles Z(T) in S, of codimension nd_+, indexed by totally positive semi-definite matrices with coefficients in the ring of integers O_F. The generating series for the classes of these cycles in the cohomology group H^{2nd_+}(S) are Hilbert-Siegel modular forms of parallel weight m/2+1. One can form analogous generating series for the classes of the special cycles in the Chow group CH^{nd_+}(S). For d_+=1 and n=1, the modularity of these series was proved by Yuan-Zhang-Zhang. In this note we prove the following: Assume the Bloch-Beilinson conjecture on the injectivity of Abel-Jacobi maps. Then the Chow group valued generating series for special cycles of codimension nd_+ on S is modular for all n with 1le nle m.
We determine the behavior of automorphic Green functions along the boundary components of toroidal compactifications of orthogonal Shimura varieties. We use this analysis to define boundary components of special divisors and prove that the generating
We consider cycles on a 3-dimensional Shimura varieties attached to a unitary group, defined over extensions of a CM field $E$, which appear in the context of the conjectures of Gan, Gross, and Prasad cite{gan-gross-prasad}. We establish a vertical d
We study the local behavior of special cycles on Shimura varieties for $mathbf{U}(2, 1) times mathbf{U}(1, 1)$ in the setting of the Gan-Gross-Prasad conjectures at primes $tau$ of the totally real field of definition of the unitary spaces which are
A cycle of elliptic curves is a list of elliptic curves over finite fields such that the number of points on one curve is equal to the size of the field of definition of the next, in a cyclic way. We study cycles of elliptic curves in which every cur
Let $k$ be a number field, let $X$ be a Kummer variety over $k$, and let $delta$ be an odd integer. In the spirit of a result by Yongqi Liang, we relate the arithmetic of rational points over finite extensions of $k$ to that of zero-cycles over $k$ f