ﻻ يوجد ملخص باللغة العربية
A colloidal suspension of active Brownian particles (ABPs) driven by controllable forces into directed or persistent motions can serve as a model for understanding the biological systems. Experiments and numerical simulations are established to investigate the motions of an ABP, a single, induced-charge electrophoretic (ICEP) metallic Janus particle, confined in a quadratic potential well. On the one hand, 1-D position histograms of the trapped active particle, behaving differently from that of a Boltzmann distribution, reveal a splitting from a single peak of the ABP positional distribution to a bimodal distribution. Decoupling the thermal and non-thermal contributions from the overall histogram is non-trivial. However, the two contributions can be examined by convoluting numerically generated thermal and non-thermal contributions into a full histogram. On the other hand, temporal fluctuations analyzed by the power spectral density (PSD), reveal two unique frequencies characterizing the stiffness of the trap and the rotational diffusion of the particle, respectively. Connections between the spatial and temporal fluctuations are obtained by the separate analysis of the temporal and spatial fluctuations of an ABP trapped in a quadratic potential well. This study reveals how thermal and nonthermal fluctuations play against each other in a confined environment.
We report on the creation of a two-dimensional Bose-Einstein condensate of cesium atoms in a gravito-optical surface trap. The condensate is produced a few micrometer above a dielectric surface on an evanescent-wave atom mirror. After evaporative coo
We report on the creation and characterization of heteronuclear KRb Feshbach molecules in an optical dipole trap. Starting from an ultracold gas mixture of K-40 and Rb-87 atoms, we create as many as 25,000 molecules at 300 nK by rf association. Optim
We present a simple and effective method of loading particles into an optical trap in air at atmospheric pressure. Material which is highly absorptive at the trapping laser wavelength, such as tartrazine dye, is used as media to attach photoluminesce
We present an evaporative cooling technique for atoms trapped in an optical dipole trap that benefits from narrow optical transitions. For an appropriate choice of wavelength and polarization, a single laser beam leads to opposite light-shifts in two
We present measurements of interspecies thermalization between ultracold samples of $^{133}$Cs and either $^{174}$Yb or $^{170}$Yb. The two species are trapped in a far-off-resonance optical dipole trap and $^{133}$Cs is sympathetically cooled by Yb.