ﻻ يوجد ملخص باللغة العربية
We study the thermodynamics and critical behavior of neutron $^3P_2$ superfluids in the inner cores of neutron stars. $^3P_2$ superfluids offer a rich phase diagram including uniaxial/biaxial nematic phases, the ferromagnetic phase, and the cyclic phase. Using the Bogoliubov-de Gennes (BdG) equation as superfluid Fermi liquid theory, we show that a strong (weak) magnetic field drives the first (second) order transition from the dihedral-two biaxial nematic phase to dihedral-four biaxial nematic phase in low (high) temperatures, and their phase boundaries are divided by the critical endpoint (CEP). We demonstrate that the set of critical exponents at the CEP satisfies the Rushbrooke, Griffiths, and Widom equalities, indicating a new universality class. At the CEP, the $^3P_2$ superfluid exhibits critical behavior with nontrivial critical exponents, indicating a new universality class. Furthermore, we find that the Ginzburg-Landau (GL) equation up to the 8th-order expansion satisfies three equalities and properly captures the physics of the CEP. This implies that the GL theory can provide a tractable way for understanding critical phenomena which may be realized in the dense core of realistic magnetars.
The interior of a neutron star is expected to be occupied by a neutron $^3P_2$ superfluid, which is the condensate of spin-triplet $p$-wave Cooper pairs of neutrons with total angular momentum $J=2$. Here we investigate the thermodynamic stability of
We discuss collective excitations (both fundamental and solitonic excitations) of quantized superfluid vortices in neutron $^3P_2$ superfluids, which likely exist in high density neutron matter such as neutron stars. Besides the well-known Kelvin mod
We study the Blume-Capel universality class in $d=frac{10}{3}-epsilon$ dimensions. The RG flow is extracted by looking at poles in fractional dimension of three loop diagrams using $overline{rm MS}$. The theory is the only nontrivial universality cla
The slope of the nuclear symmetry energy at saturation density $L$ is pointed out as a crucial quantity to determine the mass and width of neutron-star crusts. This letter clarifies the relation between $L$ and the core-crust transition. We confirm t
Precision mass spectrometry of neutron-rich nuclei is of great relevance for astrophysics. Masses of exotic nuclides impose constraints on models for the nuclear interaction and thus affect the description of the equation of state of nuclear matter,