ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-shot carrier-envelope-phase measurement in ambient air

139   0   0.0 ( 0 )
 نشر من قبل Zilong Wang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ability to measure and control the carrier envelope phase (CEP) of few-cycle laser pulses is of paramount importance for both frequency metrology and attosecond science. Here, we present a phase meter relying on the CEP-dependent photocurrents induced by circularly polarized few-cycle pulses focused between electrodes in ambient air. The new device facilitates compact single-shot, CEP measurements under ambient conditions and promises CEP tagging at repetition rates orders of magnitude higher than most conventional CEP detection schemes as well as straightforward implementation at longer wavelengths.



قيم البحث

اقرأ أيضاً

The impact of the carrier-envelope phase (CEP) of an intense multi-cycle laser pulse on the radiation of an electron beam during nonlinear Compton scattering is investigated. An interaction regime of the electron beam counterpropagating to the laser pulse is employed, when pronounced high-energy x-ray double peaks emerge at different angles near the backward direction relative to the initial electron motion. This is achieved in the relativistic interaction domain, with the additional requirements that the electron energy is much lower than that necessary for the electron reflection condition at the laser peak, and the stochasticity effects in the photon emission are weak. The asymmetry parameter of the double peaks in the angular radiation distribution is shown to serve as a sensitive and uniform measure for the CEP of the laser pulse. The method demonstrates unprecedented sensitivity to subtle CEP-effects up to 10-cycle laser pulses and can be applied for the characterization of extremely strong laser pulses in present and near future laser facilities.
We report supercontinuum generation by launching femtosecond Yb fiber laser pulses into a tapered single-mode fiber of 3 um core diameter. A spectrum of more than one octave, from 550 to 1400 nm, has been obtained with an output power of 1.3 W at a r epetition rate of 250 MHz, corresponding to a coupling efficiency of up to 60%. By using a typical f-2f interferometer, the carrier envelope offset frequency was measured and found to have a signal-to-noise ratio of nearly 30 dB.
We demonstrate a novel method to measure the temporal evolution of electric fields with optical frequencies. Our technique is based on the detection of transient currents in air plasma. These directional currents result from sub-cycle ionization of a ir with a short pump pulse, and the steering of the released electrons with the pulse to be sampled. We assess the validity of our approach by comparing it with different state-of-the-art laser-pulse characterization techniques. Notably, our method works in ambient air and facilitates a direct measurement of the field waveform, which can be viewed in real time on an oscilloscope in the exact same way as a radio frequency signal.
Controlling the carrier envelope phase (CEP) in mode-locked lasers over practically long timescales is crucial for real-world applications in ultrafast optics and precision metrology. We present a hybrid solution that combines a feed-forward techniqu e to stabilize the phase offset in fast timescales and a feedback technique that addresses slowly varying sources of interference and locking bandwidth limitations associated with gain media with long upper-state lifetimes. We experimentally realize the hybrid stabilization system in an Er:Yb:glass mode-locked laser and demonstrate 75 hours of stabilization with integrated phase noise of 14 mrad (1 Hz to 3 MHz), corresponding to around 11 as of carrier to envelope jitter. Additionally, we examine the impact of environmental factors, such as humidity and pressure, on the long-term stability and performance of the system.
We present a method to distinguish the high harmonics generated in individual half-cycle of the driving laser pulse by mixing a weak ultraviolet pulse, enabling one to observe the cutoff of each half-cycle harmonic. We show that the detail informatio n of the driving laser pulse, including the laser intensity, pulse duration and carrier-envelope phase, can be {it in situ} retrieved from the harmonic spectrogram. In addition, our results show that this method also distinguishes the half-cycle high harmonics for a pulse longer than 10 fs, suggesting a potential to extend the CEP measurement to the multi-cycle regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا