ﻻ يوجد ملخص باللغة العربية
Over the past two decades, the most commonly adopted explanation for high and hard X-ray emission in resolved quasar jets has been inverse Compton upscattering of the Cosmic Microwave Background (IC/CMB), which requires jets which remain highly relativistic on 10-1000 kpc scales. In more recent years various lines of observational evidence, including gamma-ray upper limits, have disfavored this explanation in favor of a synchrotron origin. While the IC/CMB model generally predicts a high level of gamma-ray emission, it has never been detected. Here we report the detection of a low-state Fermi/LAT gamma-ray spectrum associated with two jetted AGN which is consistent with the predictions of the IC/CMB model for their X-ray emission. We have used archival multiwavelength observations to make precise predictions for the expected minimum flux in the GeV band, assuming that the X-ray emission from the kpc-scale jet is entirely due to the IC/CMB process. In both sources -- OJ 287 and PKS 1510-089 -- the minimum-detected gamma-ray flux level agrees with predictions. Both sources exhibit extreme superluminal proper motions relative to their jet power, which argues for the well-aligned jets required by the IC/CMB model. In the case of PKS~1510-089, it cannot be ruled out that the minimum gamma-ray flux level is due to a low state of the variable core which only matches the IC/CMB prediction by chance. Continued long-term monitoring with the Fermi/LAT could settle this issue by detecting a plateau signature in the recombined light-curve which would clearly signal the presence of a non-variable emission component.
The Chandra X-ray observatory has discovered dozens of resolved, kiloparsec-scale jets associated with powerful quasars in which the X-ray fluxes are observed to be much higher than the expected level based on the radio-optical synchrotron spectrum.
Cosmic dust is a key tracer of structure formation and evolution in the universe. In active galactic nuclei (AGN) the origin and role of dust are uncertain. Here, we have studied dust in the X-ray bright and reddened type-1 quasar IC 4329A, which exh
We report the detection in Chandra ACIS archival data of an elongated soft (<3 keV) X-ray feature tp the south of the Compton Thick Active Galactic Nucleus (CT AGN) galaxy IC 2497, coincident with the emission feature known as Hannys Voorwerp (HV). T
The morphology and the distribution of material observed in SNRs reflect the interaction of the SN blast wave with the ambient environment, the physical processes associated with the SN explosion and the internal structure of the progenitor star. IC
The Chandra X-ray observatory has discovered several dozen anomalously X-ray-bright jets associated with powerful quasars. A popular explanation for the X-ray flux from the knots in these jets is that relativistic synchrotron-emitting electrons inver