ﻻ يوجد ملخص باللغة العربية
In complex multivariate data sets, different features usually include diverse associations with different variables, and different variables are associated within different regions. Therefore, exploring the associations between variables and voxels locally becomes necessary to better understand the underlying phenomena. In this paper, we propose a co-analysis framework based on biclusters, which are two subsets of variables and voxels with close scalar-value relationships, to guide the process of visually exploring multivariate data. We first automatically extract all meaningful biclusters, each of which only contains voxels with a similar scalar-value pattern over a subset of variables. These biclusters are organized according to their variable sets, and biclusters in each variable set are further grouped by a similarity metric to reduce redundancy and support diversity during visual exploration. Biclusters are visually represented in coordinated views to facilitate interactive exploration of multivariate data based on the similarity between biclusters and the correlation of scalar values with different variables. Experiments on several representative multivariate scientific data sets demonstrate the effectiveness of our framework in exploring local relationships among variables, biclusters and scalar values in the data.
The Italian AGILE space mission, with its Gamma-Ray Imaging Detector (GRID) instrument sensitive in the 30 MeV-50 GeV gamma-ray energy band, has been operating since 2007. Agilepy is an open-source Python package to analyse AGILE/GRID data. The packa
Deep neural networks have been playing an essential role in many computer vision tasks including Visual Question Answering (VQA). Until recently, the study of their accuracy was the main focus of research but now there is a trend toward assessing the
In the multi-messenger era, astronomical projects share information about transients phenomena issuing science alerts to the Scientific Community through different communications networks. This coordination is mandatory to understand the nature of th
In high-energy physics, with the search for ever smaller signals in ever larger data sets, it has become essential to extract a maximum of the available information from the data. Multivariate classification methods based on machine learning techniqu
Error-bounded lossy compression is becoming an indispensable technique for the success of todays scientific projects with vast volumes of data produced during the simulations or instrument data acquisitions. Not only can it significantly reduce data