ﻻ يوجد ملخص باللغة العربية
In this paper, we design a drug release mechanism for dynamic time division multiple access (TDMA)-based molecular communication via diffusion (MCvD). In the proposed scheme, the communication frame is divided into several time slots over each of which a transmitter nanomachine is scheduled to convey its information by releasing the molecules into the medium. To optimize the number of released molecules and the time duration of each time slot (symbol duration), we formulate a multi-objective optimization problem whose objective functions are the bit error rate (BER) of each transmitter nanomachine. Based on the number of released molecules and symbol durations, we consider four cases, namely: static-time static-number of molecules (STSN), static-time dynamic-number of molecules (STDN), dynamic-time static-number of molecules (DTSN), and dynamic-time dynamic-number of molecules (DTDN). We consider three types of medium in which the molecules are propagated, namely: mild diffusive environment (MDE), moderate diffusive environment (MODE), and severe diffusive environment (SDE). For the channel model, we consider a 3-dimensional (3D) diffusive environment, such as blood, with drift in three directions. Simulation results show that the STSN approach is the least complex one with BER around $text{10}^{text{-2}}$, but, the DTDN is the most complex scenario with the BER around $text{10}^{text{-8}}$.
The deployment of unmanned aerial vehicles (UAVs) is proliferating as they are effective, flexible and cost-efficient devices for a variety of applications ranging from natural disaster recovery to delivery of goods. We investigate a transmission mec
This contribution exploits the duality between a viral infection process and macroscopic air-based molecular communication. Airborne aerosol and droplet transmission through human respiratory processes is modeled as an instance of a multiuser molecul
Positioning with one single communication between base stations and user devices can effectively save air time and thus expand the user volume to infinite. However, this usually demands accurate synchronization between base stations. Wireless synchro
Joint radar and communication (JRC) has recently attracted substantial attention. The first reason is that JRC allows individual radar and communication systems to share spectrum bands and thus improves the spectrum utilization. The second reason is
We derive new expressions for the connection probability and the average ergodic capacity to evaluate the performance achieved by multi-connectivity (MC) in an indoor ultra-wideband terahertz (THz) communication system. In this system, the user is af