ﻻ يوجد ملخص باللغة العربية
Shouldnt language and vision features be treated equally in vision-language (VL) tasks? Many VL approaches treat the language component as an afterthought, using simple language models that are either built upon fixed word embeddings trained on text-only data or are learned from scratch. We believe that language features deserve more attention, and conduct experiments which compare different word embeddings, language models, and embedding augmentation steps on five common VL tasks: image-sentence retrieval, image captioning, visual question answering, phrase grounding, and text-to-clip retrieval. Our experiments provide some striking results; an average embedding language model outperforms an LSTM on retrieval-style tasks; state-of-the-art representations such as BERT perform relatively poorly on vision-language tasks. From this comprehensive set of experiments we propose a set of best practices for incorporating the language component of VL tasks. To further elevate language features, we also show that knowledge in vision-language problems can be transferred across tasks to gain performance with multi-task training. This multi-task training is applied to a new Graph Oriented Vision-Language Embedding (GrOVLE), which we adapt from Word2Vec using WordNet and an original visual-language graph built from Visual Genome, providing a ready-to-use vision-language embedding: http://ai.bu.edu/grovle.
Recently, there has been an increasing number of efforts to introduce models capable of generating natural language explanations (NLEs) for their predictions on vision-language (VL) tasks. Such models are appealing, because they can provide human-fri
We present a novel attention mechanism: Causal Attention (CATT), to remove the ever-elusive confounding effect in existing attention-based vision-language models. This effect causes harmful bias that misleads the attention module to focus on the spur
Transformer architectures have brought about fundamental changes to computational linguistic field, which had been dominated by recurrent neural networks for many years. Its success also implies drastic changes in cross-modal tasks with language and
Existing approaches to vision-language pre-training (VLP) heavily rely on an object detector based on bounding boxes (regions), where salient objects are first detected from images and then a Transformer-based model is used for cross-modal fusion. De
Most existing Vision-and-Language (V&L) models rely on pre-trained visual encoders, using a relatively small set of manually-annotated data (as compared to web-crawled data), to perceive the visual world. However, it has been observed that large-scal