ﻻ يوجد ملخص باللغة العربية
The observation of binary neutron star merger GW170817, along with its optical counterpart, provided the first constraint on the Hubble constant $H_0$ using gravitational wave standard sirens. When no counterpart is identified, a galaxy catalog can be used to provide the necessary redshift information. However, the true host might not be contained in a catalog which is not complete out to the limit of gravitational-wave detectability. These electromagnetic and gravitational-wave selection effects must be accounted for. We describe and implement a method to estimate $H_0$ using both the counterpart and the galaxy catalog standard siren methods. We perform a series of mock data analyses using binary neutron star mergers to confirm our ability to recover an unbiased estimate of $H_0$. Our simulations used a simplified universe with no redshift uncertainties or galaxy clustering, but with different magnitude-limited catalogs and assumed host galaxy properties, to test our treatment of both selection effects. We explore how the incompleteness of catalogs affects the final measurement of $H_0$, as well as the effect of weighting each galaxys likelihood of being a host by its luminosity. In our most realistic simulation, where the simulated catalog is about three times denser than the density of galaxies in the local universe, we find that a 4.4% measurement precision can be reached using galaxy catalogs with 50% completeness and $sim 250$ binary neutron star detections with sensitivity similar to that of Advanced LIGOs second observing run.
Einstein Telescope (ET) is conceived to be a third generation gravitational-wave observatory. Its amplitude sensitivity would be a factor ten better than advanced LIGO and Virgo and it could also extend the low-frequency sensitivity down to 1--3 Hz,
Studies of dark energy at advanced gravitational-wave (GW) interferometers normally focus on the dark energy equation of state $w_{rm DE}(z)$. However, modified gravity theories that predict a non-trivial dark energy equation of state generically als
LISA and Taiji are expected to form a space-based gravitational-wave (GW) detection network in the future. In this work, we make a forecast for the cosmological parameter estimation with the standard siren observation from the LISA-Taiji network. We
With approximately 50 binary black hole events detected by LIGO/Virgo to date and many more expected in the next few years, gravitational-wave astronomy is shifting from individual-event analyses to population studies. We perform a hierarchical Bayes
Cosmological models with a dynamical dark energy field typically lead to a modified propagation of gravitational waves via an effectively time-varying gravitational coupling $G(t)$. The local variation of this coupling between the time of emission an