ترغب بنشر مسار تعليمي؟ اضغط هنا

Exponential enhancement of multi-photon entanglement rate via quantum interference buffering

130   0   0.0 ( 0 )
 نشر من قبل Benjamin Brecht
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-photon entangled states of light are key to advancing quantum communication, computation, and metrology. Current methods for building such states are based on stitching together photons from probabilistic sources. The probability of $N$ such sources firing simultaneously decreases exponentially with $N$, imposing severe limitations on the practically achievable number of coincident photons. We tackle this challenge with a quantum interference buffer (QIB), which combines three functionalities: firstly, it stores polarization qubits, enabling the use of polarization-entangled states as resource; secondly, it implements entangled-source multiplexing, greatly enhancing the resource-state generation rates; thirdly, it implements time-multiplexed, on-demand linear optical networks for interfering subsequent states. Using the QIB, we multiplex 21 Bell-state sources and demonstrate a nine-fold enhancement in the generation rate of four-photon GHZ states. The enhancement scales exponentially with the photon number; larger states benefit more strongly. Multiplexed photon entanglement and interference will find diverse applications in quantum photonics, allowing for practical realisations of multi-photon protocols.



قيم البحث

اقرأ أيضاً

We study the photon blockade effect in a coupled cavity system, which is formed by a linear cavity coupled to a Kerr-type nonlinear cavity via a photon-hopping interaction. We explain the physical phenomenon from the viewpoint of the conventional and unconventional photon blockade effects. The corresponding physical mechanisms of the two kinds of photon blockade effects are based on the anharmonicity in the eigenenergy spectrum and the destructive quantum interference between two different transition paths, respectively. In particular, we find that the photon blockade via destructive quantum interference also exists in the conventional photon blockade regime, and that the unconventional photon blockade occurs in both the weak- and strong-Kerr nonlinearity cases. The photon blockade effect can be observed by calculating the second-order correlation function of the cavity field. This model is general and hence it can be implemented in various experimental setups such as coupled optical-cavity systems, coupled photon-magnon systems, and coupled superconducting-resonator systems. We present some discussions on the experimental feasibility.
We introduce the concept of hypergraphs to describe quantum optical experiments with probabilistic multi-photon sources. Every hyperedge represents a correlated photon source, and every vertex stands for an optical output path. Such general graph des cription provides new insights for producing complex high-dimensional multi-photon quantum entangled states, which go beyond limitations imposed by pair creation via spontaneous parametric down-conversion. Furthermore, properties of hypergraphs can be investigated experimentally. For example, the NP-Complete problem of deciding whether a hypergraph has a perfect matchin can be answered by experimentally detecting multi-photon events in quantum experiments. By introducing complex weights in hypergraphs, we show a general many-particle quantum interference and manipulating entanglement in a pictorial way. Our work paves the path for the development of multi-photon high-dimensional state generation and might inspire new applications of quantum computations using hypergraph mappings.
142 - A.B. Matsko 2002
We propose a new method of resonant enhancement of optical Kerr nonlinearity using multi-level atomic coherence. The enhancement is accompanied by suppression of the other linear and nonlinear susceptibility terms of the medium. We show that the effe ct results in a modification of the nonlinear Faraday rotation of light propagating in an Rb87 vapor cell by changing the ellipticity of the light.
Multi-particle interference is a key resource for quantum information processing, as exemplified by Boson Sampling. Hence, given its fragile nature, an essential desideratum is a solid and reliable framework for its validation. However, while several protocols have been introduced to this end, the approach is still fragmented and fails to build a big picture for future developments. In this work, we propose an operational approach to validation that encompasses and strengthens the state of the art for these protocols. To this end, we consider the Bayesian hypothesis testing and the statistical benchmark as most favorable protocols for small- and large-scale applications, respectively. We numerically investigate their operation with finite sample size, extending previous tests to larger dimensions, and against two adversarial algorithms for classical simulation: the Mean-Field sampler and the Metropolized Independent Sampler. To evidence the actual need for refined validation techniques, we show how the assessment of numerically simulated data depends on the available sample size, as well as on the internal hyper-parameters and other practically relevant constraints. Our analyses provide general insights into the challenge of validation, and can inspire the design of algorithms with a measurable quantum advantage.
We study strategies for establishing long-distance entanglement in quantum networks. Specifically, we consider networks consisting of regular lattices of nodes, in which the nearest neighbors share a pure, but non-maximally entangled pair of qubits. We look for strategies that use local operations and classical communication. We compare the classical entanglement percolation protocol, in which every network connection is converted with a certain probability to a singlet, with protocols in which classical entanglement percolation is preceded by measurements designed to transform the lattice structure in a way that enhances entanglement percolation. We analyze five examples of such comparisons between protocols and point out certain rules and regularities in their performance as a function of degree of entanglement and choice of operations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا