ﻻ يوجد ملخص باللغة العربية
In this paper, we establish the existence of ground state solutions for a fractional Schrodinger equation in the presence of a harmonic trapping potential. We also address the orbital stability of standing waves. Additionally, we provide interesting numerical results about the dynamics and compare them with other types of Schrodinger equations. Our results explain the effect of each term of the Schrodinger equation : The fractional power, the power of the nonlinearity and the harmonic potential.
We study the instability of standing-wave solutions $e^{iomega t}phi_{omega}(x)$ to the inhomogeneous nonlinear Schr{o}dinger equation $$iphi_t=-trianglephi+|x|^2phi-|x|^b|phi|^{p-1}phi, qquad inmathbb{R}^N, $$ where $ b > 0 $ and $ phi_{omega} $ is
In this article we prove a reducibility result for the linear Schrodinger equation on a Zoll manifold with quasi-periodic in time pseudo-differential perturbation of order less or equal than $1/2$. As far as we know, this is the first reducibility re
In this paper, we show the scattering of the solution for the focusing inhomogenous nonlinear Schrodinger equation with a potential begin{align*} ipartial_t u+Delta u- Vu=-|x|^{-b}|u|^{p-1}u end{align*} in the energy space $H^1(mathbb R^3)$. We pro
This paper is devoted to the asymptotic analysis of a fractional version of the Ginzburg-Landau equation in bounded domains, where the Laplacian is replaced by an integro-differential operator related to the square root Laplacian as defined in Fourie
We are concerned with the direct and inverse scattering problems associated with a time-harmonic random Schrodinger equation with unknown source and potential terms. The well-posedness of the direct scattering problem is first established. Three uniq