ﻻ يوجد ملخص باللغة العربية
GPT-2 and BERT demonstrate the effectiveness of using pre-trained language models (LMs) on various natural language processing tasks. However, LM fine-tuning often suffers from catastrophic forgetting when applied to resource-rich tasks. In this work, we introduce a concerted training framework (method) that is the key to integrate the pre-trained LMs to neural machine translation (NMT). Our proposed Cnmt consists of three techniques: a) asymptotic distillation to ensure that the NMT model can retain the previous pre-trained knowledge; b) a dynamic switching gate to avoid catastrophic forgetting of pre-trained knowledge; and c) a strategy to adjust the learning paces according to a scheduled policy. Our experiments in machine translation show method gains of up to 3 BLEU score on the WMT14 English-German language pair which even surpasses the previous state-of-the-art pre-training aided NMT by 1.4 BLEU score. While for the large WMT14 English-French task with 40 millions of sentence-pairs, our base model still significantly improves upon the state-of-the-art Transformer big model by more than 1 BLEU score.
Neural Chat Translation (NCT) aims to translate conversational text between speakers of different languages. Despite the promising performance of sentence-level and context-aware neural machine translation models, there still remain limitations in cu
Exploiting large pretrained models for various NMT tasks have gained a lot of visibility recently. In this work we study how BERT pretrained models could be exploited for supervised Neural Machine Translation. We compare various ways to integrate pre
The recently proposed BERT has shown great power on a variety of natural language understanding tasks, such as text classification, reading comprehension, etc. However, how to effectively apply BERT to neural machine translation (NMT) lacks enough ex
Although neural machine translation (NMT) has advanced the state-of-the-art on various language pairs, the interpretability of NMT remains unsatisfactory. In this work, we propose to address this gap by focusing on understanding the input-output beha
Small perturbations in the input can severely distort intermediate representations and thus impact translation quality of neural machine translation (NMT) models. In this paper, we propose to improve the robustness of NMT models with adversarial stab