ﻻ يوجد ملخص باللغة العربية
In this paper, we develop a space-time upscaling framework that can be used for many challenging porous media applications without scale separation and high contrast. Our main focus is on nonlinear differential equations with multiscale coefficients. The framework is built on nonlinear nonlocal multi-continuum upscaling concept and significantly extends the results in the proceeding paper. Our approach starts with a coarse space-time partition and identifies test functions for each partition, which plays a role of multi-continua. The test functions are defined via optimization and play a crucial role in nonlinear upscaling. In the second stage, we solve nonlinear local problems in oversampled regions with some constraints defined via test functions. These local solutions define a nonlinear map from macroscopic variables determined with the help of test functions to the fine-grid fields. This map can be thought as a downscaled map from macroscopic variables to the fine-grid solution. In the final stage, we seek macroscopic variables in the entire domain such that the downscaled field solves the global problem in a weak sense defined using the test functions. We present an analysis of our approach for an example nonlinear problem. Our unified framework plays an important role in designing various upscaled methods. Because local problems are directly related to the fine-grid problems, it simplifies the process of finding local solutions with appropriate constraints. Using machine learning (ML), we identify the complex map from macroscopic variables to fine-grid solution. We present numerical results for several porous media applications, including two-phase flow and transport.
In this paper, we consider a parabolic problem with time-dependent heterogeneous coefficients. Many applied problems have coupled space and time heterogeneities. Their homogenization or upscaling requires cell problems that are formulated in space-ti
In this paper, we discuss multiscale methods for nonlinear problems. The main idea of these approaches is to use local constraints and solve problems in oversampled regions for constructing macroscopic equations. These techniques are intended for pro
Skin contraction is an important biophysical process that takes place during and after the recovery of deep tissue injury. This process is mainly caused by fibroblasts (skin cells) and myofibroblasts (differentiated fibroblasts) that exert pulling fo
Differential algebraic Riccati equations are at the heart of many applications in control theory. They are time-depent, matrix-valued, and in particular nonlinear equations that require special methods for their solution. Low-rank methods have been u
In this article, an advanced differential quadrature (DQ) approach is proposed for the high-dimensional multi-term time-space-fractional partial differential equations (TSFPDEs) on convex domains. Firstly, a family of high-order difference schemes is