ترغب بنشر مسار تعليمي؟ اضغط هنا

The nature of the diffuse light near cities detected in nighttime satellite imagery

59   0   0.0 ( 0 )
 نشر من قبل Alejandro S\\'anchez de Miguel
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Diffuse glow has been observed around brightly lit cities in nighttime satellite imagery since at least the first publication of large scale maps in the late 1990s. In the literature, this has often been assumed to be an error related to the sensor, and referred to as blooming, presumably in relation to the effect that can occur when using a CCD to photograph a bright source. Here we show that the effect is not instrumental, but in fact represents a real detection of light scattered by the atmosphere. Data from the Universidad Complutense Madrid sky brightness survey are compared to nighttime imagery from multiple sensors with differing spatial resolutions, and found to be strongly correlated. These results suggest that it should be possible for a future space-based imaging radiometer to monitor changes in the diffuse artificial skyglow of cities.



قيم البحث

اقرأ أيضاً

The recent explosion in applications of machine learning to satellite imagery often rely on visible images and therefore suffer from a lack of data during the night. The gap can be filled by employing available infra-red observations to generate visi ble images. This work presents how deep learning can be applied successfully to create those images by using U-Net based architectures. The proposed methods show promising results, achieving a structural similarity index (SSIM) up to 86% on an independent test set and providing visually convincing output images, generated from infra-red observations.
100 - J. Takahashi , Y. Itoh , T. Matsuo 2021
Context. The discovery of an extrasolar planet with an ocean has crucial importance in the search for life beyond Earth. The polarimetric detection of specularly reflected light from a smooth liquid surface is anticipated theoretically, though the po larimetric signature of Earths oceans has not yet been conclusively detected in disk-integrated planetary light. Aims. We aim to detect and measure the polarimetric signature of the Earths oceans. Methods. We conducted near-infrared polarimetry for lunar Earthshine and collected data on 32 nights with a variety of ocean fractions in the Earthshine-contributing region. Results. A clear positive correlation was revealed between the polarization degree and ocean fraction. We found hourly variations in polarization in accordance with rotational transition of the ocean fraction. The ratios of the variation to the typical polarization degree were as large as ~0.2-1.4. Conclusions. Our observations provide plausible evidence of the polarimetric signature attributed to Earths oceans. Near-infrared polarimetry may be considered a prospective technique in the search for exoplanetary oceans.
We present the first spatially resolved polarized scattered light H-band detection of the DoAr 28 transitional disk. Our two epochs of imagery detect the scattered light disk from our effective inner working angle of 0.10 (13 AU) out to 0.50 (65 AU). This inner working angle is interior to the location of the systems gap inferred by previous studies using SED modeling (15 AU). We detected a candidate point source companion 1.08 northwest of the system; however, our second epoch of imagery strongly suggests that this object is a background star. We constructed a grid of Monte Carlo Radiative Transfer models of the system, and our best fit models utilize a modestly inclined (50 deg), 0.01 Msun disk that has a partially depleted inner gap from the dust sublimation radius out to ~8 AU. Subtracting this best fit, axi-symmetric model from our polarized intensity data reveals evidence for two small asymmetries in the disk, which could be attributable to variety of mechanisms.
Light pollution is a worldwide phenomenon whose consequences for the natural environment and the human health are being intensively studied nowadays. Most published studies address issues related to light pollution inland. Coastal waters, however, ar e spaces of high environmental interest, due to their biodiversity richness and their economical significance. The elevated population density in coastal regions is accompanied by correspondingly large emissions of artificial light at night, whose role as an environmental stressor is increasingly being recognized. (...) At the same time, the marine surface environment provides a stage free from obstacles for measuring the dependence of the skyglow on the distance to the light polluting sources, and validating (or rejecting) atmospheric light propagation models. In this work we present a proof-of-concept of a gimbal measurement system that can be used for zenithal skyglow measurements on board both small boats and large vessels under actual navigation conditions. We report the results obtained in the summer of 2016 along two measurement routes in the Mediterranean waters offshore Barcelona, travelling 9 and 31.7 km away from the coast. The atmospheric conditions in both routes were different from the ones assumed for the calculation of recently published models of the anthropogenic sky brightness. They were closer in the first route, whose results approach better the theoretical predictions. The results obtained in the second route, conducted under a clearer atmosphere, showed systematic differences that can be traced back to two expected phenomena, which are a consequence of the smaller aerosol content: the reduction of the anthropogenic sky glow at short distances from the sources, and the slower decay rate of brightness with distance, which gives rise to a relative excess of brightness at large distances from the coastline.
160 - T. Cavalie , B. Benmahi , V. Hue 2021
Context. The tropospheric wind pattern in Jupiter consists of alternating prograde and retrograde zonal jets with typical velocities of up to 100 m/s around the equator. At much higher altitudes, in the ionosphere, strong auroral jets have been disco vered with velocities of 1-2 km/s. There is no such direct measurement in the stratosphere of the planet. Aims. In this paper, we bridge the altitude gap between these measurements by directly measuring the wind speeds in Jupiters stratosphere. Methods. We use the Atacama Large Millimeter/submillimeter Arrays very high spectral and angular resolution imaging of the stratosphere of Jupiter to retrieve the wind speeds as a function of latitude by fitting the Doppler shifts induced by the winds on the spectral lines. Results. We detect for the first time equatorial zonal jets that reside at 1 mbar, i.e. above the altitudes where Jupiters Quasi-Quadrennial Oscillation occurs. Most noticeably, we find 300-400 m/s non-zonal winds at 0.1 mbar over the polar regions underneath the main auroral ovals. They are in counter-rotation and lie several hundreds of kilometers below the ionospheric auroral winds. We suspect them to be the lower tail of the ionospheric auroral winds. Conclusions. We detect directly and for the first time strong winds in Jupiters stratosphere. They are zonal at low-to-mid latitudes and non-zonal at polar latitudes. The wind system found at polar latitudes may help increase the effciency of chemical complexification by confining the photochemical products in a region of large energetic electron precipitation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا