ترغب بنشر مسار تعليمي؟ اضغط هنا

Four-wave Mixing of Topological Edge Plasmons in Graphene Metasurfaces

99   0   0.0 ( 0 )
 نشر من قبل Nicolae Panoiu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study topologically-protected four-wave mixing (FWM) interactions in a plasmonic metasurface consisting of a periodic array of nanoholes in a graphene sheet, which exhibits a wide topological bandgap at terahertz frequencies upon the breaking of time-reversal symmetry by a static magnetic field. We demonstrate that due to the significant nonlinearity enhancement and large lifetime of graphene plasmons in specific configurations, a net gain of FWM interaction of plasmonic edge states within the topological bandgap can be achieved with pump power of less than 10 nW. In particular, we find that the effective waveguide nonlinearity coefficient is about 1.1x10^13 1/(Wm), i.e., more than ten orders of magnitude larger than that of commonly used, highly nonlinear silicon photonic nanowires. These findings could pave a new way for developing ultra-low-power-consumption, highly-integrated and robust active photonic systems at deep-subwavelength scale for applications in quantum communications and information processing.



قيم البحث

اقرأ أيضاً

The unique linear and massless band structure of graphene, in a purely two-dimensional Dirac fermionic structure, have led to intense research spanning from condensed matter physics to nanoscale device applications covering the electrical, thermal, m echanical and optical domains. Here we report three consecutive first-observations in graphene-silicon hybrid optoelectronic devices: (1) ultralow power resonant optical bistability; (2) self-induced regenerative oscillations; and (3) coherent four-wave mixing, all at a few femtojoule cavity recirculating energies. These observations, in comparison with control measurements with solely monolithic silicon cavities, are enabled only by the dramatically-large and chi(3) nonlinearities in graphene and the large Q/V ratios in wavelength-localized photonic crystal cavities. These results demonstrate the feasibility and versatility of hybrid two-dimensional graphene-silicon nanophotonic devices for next-generation chip-scale ultrafast optical communications, radio-frequency optoelectronics, and all-optical signal processing.
We suggest a scheme to manipulate paraxial diffraction by utilizing the dependency of a four-wave mixing process on the relative angle between the light fields. A microscopic model for four-wave mixing in a Lambda-type level structure is introduced a nd compared to recent experimental data. We show that images with feature size as low as 10 micrometers can propagate with very little or even negative diffraction. The mechanism is completely different from that conserving the shape of spatial solitons in nonlinear media, as here diffraction is suppressed for arbitrary spatial profiles. At the same time, the gain inherent to the nonlinear process prevents loss and allows for operating at high optical depths. Our scheme does not rely on atomic motion and is thus applicable to both gaseous and solid media.
We theoretically investigate and optimize the performance of four-wave mixing (FWM) in microring resonators (MRRs) integrated with two-dimensional (2D) layered graphene oxide (GO) films. Owing to the interaction between the MRRs and the highly nonlin ear GO films as well as to the resonant enhancement effect, the FWM efficiency in GO-coated MRRs can be significantly improved. Based on previous experiments, we perform detailed analysis for the influence of the GO film parameters and MRR coupling strength on the FWM conversion efficiency (CE) of the hybrid MRRs. By optimizing the device parameters to balance the trade-off between the Kerr nonlinearity and loss, we achieve a high CE enhancement of ~18.6 dB relative to the uncoated MRR, which is ~8.3 dB higher than previous experimental results. The influence of photo-thermal changes in the GO films as well as variations in the MRR parameters such as the ring radius and waveguide dispersion on the FWM performance is also discussed. These results highlight the significantly improved FWM performance that can be achieved in MRRs incorporating GO films and provide a guide for optimizing their FWM performance.
269 - K. Tan , M. Menotti , Z. Vernon 2019
We experimentally demonstrate stimulated four-wave mixing in two linearly uncoupled integrated Si$_3$N$_4$ micro-resonators. In our structure the resonance combs of each resonator can be tuned independently, with the energy transfer from one resonato r to the other occurring in the presence of a nonlinear interaction. This method allows flexible and efficient on-chip control of the nonlinear interaction, and is readily applicable to other third-order nonlinear phenomena.
Advances in graphene plasmonics offer numerous opportunities for enabling the design and manufacture of a variety of nanoelectronics and other exciting optical devices. However, due to the limitation of material properties, its operating frequency ca nnot drop to the microwave range. In this work, a new concept of microwave equivalent graphene based on the ultrathin monolayer plasmonic metasurface is proposed and demonstrated. Based on this concept, elliptical and hyperbolic dispersion can be theoretically obtained by stacking the equivalent graphene metasurfaces periodically. As proofs of the concept and method, an elliptical and an all-metal hyperbolic metamaterial are designed and numerically demonstrated. As a specified realization of the method, a practical hyperbolic metamaterial is fabricated and experimentally investigated with its validity verified by the directional propagation and photonic spin Hall effect. Furthermore, to investigate the validity of the method under extreme parameter conditions, a proof-of-concept hyperlens is designed and fabricated, with its near-field resolution of 0.05$lambda$ experimentally verified. Based on the proposed concept, diverse optical graphene metamaterials such as focusing lens, dispersion-dependent directional couplers, and epsilon-near-zero materials can also be realized in the microwave regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا