ﻻ يوجد ملخص باللغة العربية
Let $G=(V,E)$ be a $tau$-critical graph with $tau(G)=t$. ErdH{o}s and Gallai proved that $|V|leq 2t$ and the bound $|E|leq {t+1choose 2}$ was obtained by ErdH{o}s, Hajnal and Moon. We give here the sharp combined bound $|E|+|V|leq {t+2choose 2}$ and find all graphs with equality.
A graph $G$ is emph{uniquely k-colorable} if the chromatic number of $G$ is $k$ and $G$ has only one $k$-coloring up to permutation of the colors. A uniquely $k$-colorable graph $G$ is edge-critical if $G-e$ is not a uniquely $k$-colorable graph for
A well-known theorem of Vizing states that if $G$ is a simple graph with maximum degree $Delta$, then the chromatic index $chi(G)$ of $G$ is $Delta$ or $Delta+1$. A graph $G$ is class 1 if $chi(G)=Delta$, and class 2 if $chi(G)=Delta+1$; $G$ is $Delt
Given an integer $rge1$ and graphs $G, H_1, ldots, H_r$, we write $G rightarrow ({H}_1, ldots, {H}_r)$ if every $r$-coloring of the edges of $G$ contains a monochromatic copy of $H_i$ in color $i$ for some $iin{1, ldots, r}$. A non-complete graph $G$
Given graphs $G, H_1, H_2$, we write $G rightarrow ({H}_1, H_2)$ if every ${$red, blue$}$-coloring of the edges of $G$ contains a red copy of $H_1$ or a blue copy of $H_2$. A non-complete graph $G$ is $(H_1, H_2)$-co-critical if $G rightarrow ({H}_1
Let k_r(n,m) denote the minimum number of r-cliques in graphs with n vertices and m edges. For r=3,4 we give a lower bound on k_r(n,m) that approximates k_r(n,m) with an error smaller than n^r/(n^2-2m). The solution is based on a constraint minimizat