ﻻ يوجد ملخص باللغة العربية
The current work presents a tensor formulation of the Lumley Decomposition (LD), introduced in its original form by Lumley (1967b), allowing decompositions of turbulent flow fields in curvilinear coordinates. The LD in his form is shown to enable semi-analytical decompositions of self-similar turbulent flows in general coordinate systems. The decomposition is applied to the far-field region of the fully developed turbulent axi-symmetric jet, which is expressed in stretched spherical coordinates in order to exploit the self-similar nature of the flow while ensuring the self-adjointness of the LD integral. From the LD integral it is deduced that the optimal eigenfunctions in the streamwise direction are stretched amplitude-decaying Fourier modes (SADFM). The SADFM are obtained from the LD integral upon the introduction of a streamwise-decaying weight function in the vector space definition. The wavelength of the Fourier modes is linearly increasing in the streamwise direction with an amplitude which decays with the -3/2 power of distance from the virtual origin. The streamwise evolution of the SADFM re-sembles reversed wave shoaling known from surface waves. The energy- and cross-spectra obtained from these SADFM exhibit a -5/3- and a -7/3-slope region, respectively, as would be expected for regular Fourier modes in homogeneous and constant shear flows. The approach introduced in this work can be extended to other flows which admit to equilibrium similarity, such that a Fourier-based decomposition along inhomogeneous flow directions can be performed.
In the current work the reconstruction of the far-field region of the turbulent axi-symmetric jet is performed in order to investigate the modal turbulence kinetic energy production contributions. The reconstruction of the field statistics is based o
The proliferation of turbulence in subcritical wall-bounded shear flows involves spatially localised coherent structures. Turbulent spots correspond to finite-time nonlinear responses to pointwise disturbances and are regarded as seeds of turbulence
The similarity of the two-point correlation tensor along the streamwise direction in the axi-symmetric jet far-field is analyzed, herein its utility in spectral theory. A separable two-point correlation coefficient has been the basis for the argument
A generalised quasilinear (GQL) approximation (Marston emph{et al.}, emph{Phys. Rev. Lett.}, vol. 116, 104502, 2016) is applied to turbulent channel flow at $Re_tau simeq 1700$ ($Re_tau$ is the friction Reynolds number), with emphasis on the energy t
An extension of Proper Orthogonal Decomposition is applied to the wall layer of a turbulent channel flow (Re {tau} = 590), so that empirical eigenfunctions are defined in both space and time. Due to the statistical symmetries of the flow, the igenfun