ﻻ يوجد ملخص باللغة العربية
In the light of recent data, we study the new physics effects in the exclusive $b to s ell^+ell^-$ decays from a model independent perspective. Different combinations of the dimension six effective operators along with their respective Wilson coefficients are chosen for the analysis. To find out the operator or sets of operators that can best explain the available data in this channel, we simultaneously apply popular model selection tools like cross-validation and the information theoretic approach like Akaike Information Criterion (AIC). There are one, two, and three-operator scenarios which survive the test and a left-handed quark current with vector muon coupling is common among them. This is also the only surviving one-operator scenario. Best-fit values and correlations of the new Wilson coefficients are supplied for all the selected scenarios. We find that the angular observables play the dominant role in the model selection procedure. We also note that while a left-handed quark current with axial-vector muon coupling is the only one-operator scenario able to explain the ratios $R_{K^{(*)}}$ ($R_{K^*}$ for $q^2in [ 0.045, 1.1] {rm GeV}^2$ in particular), there are also a couple of two operator scenarios that can simultaneously explain the measured $R_{K^{(*)}}$.
Ratios of branching fractions of semileptonic B decays, $(B to H mu mu)$ over $(B to H ee)$ with $H=K, K^*,X_s, K_0(1430), phi, ldots$ are sensitive probes of lepton universality. In the Standard Model, the underlying flavor changing neutral current
A novel approach to reconstruct inclusive $bar{B} to X_{s} ell^{+}ell^{-}$ decays is presented. The method relies on isopsin symmetry to extrapolate the semi-inclusive signature $X_{b}to K^{+} ell^{+}ell^{-} X$ to the fully inclusive rate in $B^{+}$
Rare inclusive $B$ decays such as $bar{B}to X_{s(d)} ell^+ell^-$ are interesting probes for physics beyond the Standard Model. Due to the complementarity to their exclusive counterparts, they might shed light on the anomalies currently seen in exclus
Rare semileptonic $b to s ell^+ ell^-$ transitions provide some of the most promising frameworks to search for new physics effects. Recent analyses of these decays have indicated an anomalous behaviour in measurements of angular distributions of the
Based on the standard model (SM) of particle physics, we study the decays $Lambda_b to Lambda ell^+ ell^-$ in light of the available inputs from lattice and the data from LHCb. We fit the form-factors of this decay mode using the available theory and