ﻻ يوجد ملخص باللغة العربية
Magnetic resonance-electrical properties tomography (MR-EPT) is a technique used to estimate the conductivity and permittivity of tissues from MR measurements of the transmit magnetic field. Different reconstruction methods are available, however all these methods present several limitations which hamper the clinical applicability. Standard Helmholtz based MR-EPT methods are severely affected by noise. Iterative reconstruction methods such as contrast source inversion-EPT (CSI-EPT) are typically time consuming and are dependent on their initialization. Deep learning (DL) based methods require a large amount of training data before sufficient generalization can be achieved. Here, we investigate the benefits achievable using a hybrid approach, i.e. using MR-EPT or DL-EPT as initialization guesses for standard 3D CSI-EPT. Using realistic electromagnetic simulations at 3 T and 7 T, the accuracy and precision of hybrid CSI reconstructions are compared to standard 3D CSI-EPT reconstructions. Our results indicate that a hybrid method consisting of an initial DL-EPT reconstruction followed by a 3D CSI-EPT reconstruction would be beneficial. DL-EPT combined with standard 3D CSI-EPT exploits the power of data driven DL-based EPT reconstructions while the subsequent CSI-EPT facilitates a better generalization by providing data consistency.
Magnetic Resonance Fingerprinting (MRF) enables the simultaneous quantification of multiple properties of biological tissues. It relies on a pseudo-random acquisition and the matching of acquired signal evolutions to a precomputed dictionary. However
The susceptibility-based positive contrast MR technique was applied to estimate arbitrary magnetic susceptibility distributions of the metallic devices using a kernel deconvolution algorithm with a regularized L-1 minimization.Previously, the first-o
The MR-Linac is a combination of an MR-scanner and radiotherapy linear accelerator (Linac) which holds the promise to increase the precision of radiotherapy treatments with MR-guided radiotherapy by monitoring motion during radiotherapy with MRI, and
Purpose: To study the accuracy of motion information extracted from beat-to-beat 3D image-based navigators (3D iNAVs) collected using a variable-density cones trajectory with different combinations of spatial resolutions and scan acceleration factors
Objectives: Precise segmentation of total extraocular muscles (EOM) and optic nerve (ON) is essential to assess anatomical development and progression of thyroid-associated ophthalmopathy (TAO). We aim to develop a semantic segmentation method based