ﻻ يوجد ملخص باللغة العربية
The dust mass absorption coefficient, $kappa_{d}$, is the conversion function used to infer physical dust masses from observations of dust emission. However, it is notoriously poorly constrained, and it is highly uncertain how it varies, either between or within galaxies. Here we present the results of a proof-of concept study, using the DustPedia data for two nearby face-on spiral galaxies M74 (NGC 628) and M83 (NGC 5236), to create the first ever maps of $kappa_{d}$ in galaxies. We determine $kappa_{d}$ using an empirical method that exploits the fact that the dust-to-metals ratio of the interstellar medium is constrained by direct measurements of the depletion of gas-phase metals. We apply this method pixel-by-pixel within M74 and M83, to create maps of $kappa_{d}$. We also demonstrate a novel method of producing metallicity maps for galaxies with irregularly-sampled measurements, using the machine learning technique of Gaussian process regression. We find strong evidence for significant variation in $kappa_{d}$. We find values of $kappa_{d}$ at 500 $mu$m spanning the range 0.11-0.25 ${rm m^{2},kg^{-1}}$ in M74, and 0.15-0.80 ${rm m^{2},kg^{-1}}$ in M83. Surprisingly, we find that $kappa_{d}$ shows a distinct inverse correlation with the local density of the interstellar medium. This inverse correlation is the opposite of what is predicted by standard dust models. However, we find this relationship to be robust against a large range of changes to our method - only the adoption of unphysical or highly unusual assumptions would be able to suppress it.
Aims: We compare the far-infrared to sub-millimetre dust emission properties measured in high Galactic latitude cirrus with those determined in a sample of 204 late-type DustPedia galaxies. The aim is to verify if it is appropriate to use Milky Way d
Most radiative transfer models assume that dust in spiral galaxies is distributed exponentially. In this paper our goal is to verify this assumption by analysing the two-dimensional large-scale distribution of dust in galaxies from the DustPedia samp
We study the fraction of stellar radiation absorbed by dust, f_abs, in 814 galaxies of different morphological types. The targets constitute the vast majority (93%) of the DustPedia sample, including almost all large (optical diameter larger than 1),
Methods. We have modelled a sample of ~800 nearby galaxies, spanning a wide range of metallicity, gas fraction, specific star formation rate and Hubble stage. We have derived the dust properties of each object from its spectral energy distribution. T
We present a study of the dust-to-gas ratios in five nearby galaxies NGC 628 (M74), NGC 6503, NGC 7793, UGC 5139 (Holmberg I), and UGC 4305 (Holmberg II). Using Hubble Space Telescope broad band WFC3/UVIS UV and optical images from the Treasury progr