We study heat conduction mediated by longitudinal phonons in one dimensional disordered harmonic chains. Using scaling properties of the phonon density of states and localization in disordered systems, we find non-trivial scaling of the thermal conductance with the system size. Our findings are corroborated by extensive numerical analysis. We show that a system with strong disorder, characterized by a `heavy-tailed probability distribution, and with large impedance mismatch between the bath and the system satisfies Fouriers law. We identify a dimensionless scaling parameter, related to the temperature scale and the localization length of the phonons, through which the thermal conductance for different models of disorder and different temperatures follows a universal behavior.