ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-modality Latent Interaction Network for Visual Question Answering

90   0   0.0 ( 0 )
 نشر من قبل Gao Peng
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Exploiting relationships between visual regions and question words have achieved great success in learning multi-modality features for Visual Question Answering (VQA). However, we argue that existing methods mostly model relations between individual visual regions and words, which are not enough to correctly answer the question. From humans perspective, answering a visual question requires understanding the summarizations of visual and language information. In this paper, we proposed the Multi-modality Latent Interaction module (MLI) to tackle this problem. The proposed module learns the cross-modality relationships between latent visual and language summarizations, which summarize visual regions and question into a small number of latent representations to avoid modeling uninformative individual region-word relations. The cross-modality information between the latent summarizations are propagated to fuse valuable information from both modalities and are used to update the visual and word features. Such MLI modules can be stacked for several stages to model complex and latent relations between the two modalities and achieves highly competitive performance on public VQA benchmarks, VQA v2.0 and TDIUC . In addition, we show that the performance of our methods could be significantly improved by combining with pre-trained language model BERT.



قيم البحث

اقرأ أيضاً

This paper considers a network referred to as Modality Shifting Attention Network (MSAN) for Multimodal Video Question Answering (MVQA) task. MSAN decomposes the task into two sub-tasks: (1) localization of temporal moment relevant to the question, a nd (2) accurate prediction of the answer based on the localized moment. The modality required for temporal localization may be different from that for answer prediction, and this ability to shift modality is essential for performing the task. To this end, MSAN is based on (1) the moment proposal network (MPN) that attempts to locate the most appropriate temporal moment from each of the modalities, and also on (2) the heterogeneous reasoning network (HRN) that predicts the answer using an attention mechanism on both modalities. MSAN is able to place importance weight on the two modalities for each sub-task using a component referred to as Modality Importance Modulation (MIM). Experimental results show that MSAN outperforms previous state-of-the-art by achieving 71.13% test accuracy on TVQA benchmark dataset. Extensive ablation studies and qualitative analysis are conducted to validate various components of the network.
281 - Lei Shi , Shijie Geng , Kai Shuang 2020
Multi-modality fusion technologies have greatly improved the performance of neural network-based Video Description/Caption, Visual Question Answering (VQA) and Audio Visual Scene-aware Dialog (AVSD) over the recent years. Most previous approaches onl y explore the last layers of multiple layer feature fusion while omitting the importance of intermediate layers. To solve the issue for the intermediate layers, we propose an efficient Quaternion Block Network (QBN) to learn interaction not only for the last layer but also for all intermediate layers simultaneously. In our proposed QBN, we use the holistic text features to guide the update of visual features. In the meantime, Hamilton quaternion products can efficiently perform information flow from higher layers to lower layers for both visual and text modalities. The evaluation results show our QBN improved the performance on VQA 2.0, even though using surpass large scale BERT or visual BERT pre-trained models. Extensive ablation study has been carried out to testify the influence of each proposed module in this study.
Learning effective fusion of multi-modality features is at the heart of visual question answering. We propose a novel method of dynamically fusing multi-modal features with intra- and inter-modality information flow, which alternatively pass dynamic information between and across the visual and language modalities. It can robustly capture the high-level interactions between language and vision domains, thus significantly improves the performance of visual question answering. We also show that the proposed dynamic intra-modality attention flow conditioned on the other modality can dynamically modulate the intra-modality attention of the target modality, which is vital for multimodality feature fusion. Experimental evaluations on the VQA 2.0 dataset show that the proposed method achieves state-of-the-art VQA performance. Extensive ablation studies are carried out for the comprehensive analysis of the proposed method.
We propose an Auto-Parsing Network (APN) to discover and exploit the input datas hidden tree structures for improving the effectiveness of the Transformer-based vision-language systems. Specifically, we impose a Probabilistic Graphical Model (PGM) pa rameterized by the attention operations on each self-attention layer to incorporate sparse assumption. We use this PGM to softly segment an input sequence into a few clusters where each cluster can be treated as the parent of the inside entities. By stacking these PGM constrained self-attention layers, the clusters in a lower layer compose into a new sequence, and the PGM in a higher layer will further segment this sequence. Iteratively, a sparse tree can be implicitly parsed, and this trees hierarchical knowledge is incorporated into the transformed embeddings, which can be used for solving the target vision-language tasks. Specifically, we showcase that our APN can strengthen Transformer based networks in two major vision-language tasks: Captioning and Visual Question Answering. Also, a PGM probability-based parsing algorithm is developed by which we can discover what the hidden structure of input is during the inference.
111 - Xuehai He , Zhuo Cai , Wenlan Wei 2020
Is it possible to develop an AI Pathologist to pass the board-certified examination of the American Board of Pathology (ABP)? To build such a system, three challenges need to be addressed. First, we need to create a visual question answering (VQA) da taset where the AI agent is presented with a pathology image together with a question and is asked to give the correct answer. Due to privacy concerns, pathology images are usually not publicly available. Besides, only well-trained pathologists can understand pathology images, but they barely have time to help create datasets for AI research. The second challenge is: since it is difficult to hire highly experienced pathologists to create pathology visual questions and answers, the resulting pathology VQA dataset may contain errors. Training pathology VQA models using these noisy or even erroneous data will lead to problematic models that cannot generalize well on unseen images. The third challenge is: the medical concepts and knowledge covered in pathology question-answer (QA) pairs are very diverse while the number of QA pairs available for modeling training is limited. How to learn effective representations of diverse medical concepts based on limited data is technically demanding. In this paper, we aim to address these three challenges. To our best knowledge, our work represents the first one addressing the pathology VQA problem. To deal with the issue that a publicly available pathology VQA dataset is lacking, we create PathVQA dataset. To address the second challenge, we propose a learning-by-ignoring approach. To address the third challenge, we propose to use cross-modal self-supervised learning. We perform experiments on our created PathVQA dataset and the results demonstrate the effectiveness of our proposed learning-by-ignoring method and cross-modal self-supervised learning methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا