ترغب بنشر مسار تعليمي؟ اضغط هنا

Brownian motion of supermassive black holes in galaxy cores

56   0   0.0 ( 0 )
 نشر من قبل Pierfrancesco Di Cintio
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the dynamics of supermassive black holes (SMBHs) in galactic cores by means of a semi-analytic model based on the Langevin equation, including dynamical friction and stochastic noise accounting for the gravitational interactions with stars. The model is validated against direct $N$-body simulations of intermediate-mass black holes in stellar clusters where a realistic number of particles is accessible. For the galactic case, we find that the SMBH experiences a Brownian-like motion with a typical displacement from the geometric center of the Galaxy of a few parsecs, for system parameters compatible with M87. keywords{stellar dynamics, black hole physics, methods: n-body simulations, methods: statistical.



قيم البحث

اقرأ أيضاً

We follow trajectories of recoiling supermassive black holes (SMBHs) in analytical and numerical models of galaxy merger remnants with masses of $10^{11} rm{M_{sun}}$ and $10^{12} rm{M_{sun}}$. We construct various merger remnant galaxies in order to investigate how the central SMBH mass and the mass ratio of progenitor galaxies influence escape velocities of recoiling SMBHs. Our results show that static analytical models of major merger remnant galaxies overestimate the SMBHs escape velocities. During major mergers violent relaxation leads to the decrease of galaxy mass and lower potential at large remnant radii. This process is not depicted in static analytical potential but clearly seen in our numerical models. Thus, the evolving numerical model is a more realistic description of dynamical processes in galaxies with merging SMBHs. We find that SMBH escape velocities in numerical major merger remnant galaxies can be up to 25 per cent lower compared to those in analytical models. Consequently, SMBHs in numerical models generally reach greater galactocentric distances and spend more time on bound orbits outside of the galactic nuclei. Thus, numerical models predict a greater number of spatially-offset active galactic nuclei (AGNs).
By examining the locations of central black holes in two elliptical galaxies, M,32 and M,87, we derive constraints on the violation of the strong equivalence principle for purely gravitational objects, i.e. black holes, of less than about two-thirds, $eta_N<0.68$ from the gravitational interaction of M,87 with its neighbours in the Virgo cluster. Although M,32 appears to be a good candidate for this technique, the high concentration of stars near its centre substantially weakens the constraints. On the other hand, if a central black hole is found in NGC 205 or one of the other satellite ellipticals of M,31, substantially better constraints could be obtained. In all cases the constraints could improve dramatically with better astrometry.
Interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binarys orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binarys orbital eccentricity as well. We present a general treatment of this problem based on the Fokker-Planck equation for f, defined as the probability distribution for the binarys orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analytic approximations are presented for some of these coefficients. Solutions of the Fokker-Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: 1) the orientation of the binarys orbit evolves toward alignment with the plane of rotation of the nucleus; 2) binary orbital eccentricity decreases for aligned binaries and increases for counter-aligned ones. We find that the diffusive (random-walk) component of a binarys evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.
174 - Stuart McAlpine 2018
We investigate the rapid growth phase of supermassive black holes (BHs) within the hydrodynamical cosmological eagle simulation. This non-linear phase of BH growth occurs within $sim$$L_{*}$ galaxies, embedded between two regulatory states of the gal axy host: in sub $L_{*}$ galaxies efficient stellar feedback regulates the gas inflow onto the galaxy and significantly reduces the growth of the central BH, while in galaxies more massive than $L_{*}$ efficient AGN feedback regulates the gas inflow onto the galaxy and curbs further non-linear BH growth. We find evolving critical galaxy and halo mass scales at which rapid BH growth begins. Galaxies in the low-redshift Universe transition into the rapid BH growth phase in haloes that are approximately an order of magnitude more massive than their high-redshift counterparts (M{200} $approx 10^{12.4}$~Msol at $z approx 0$ decreasing to M{200} $approx 10^{11.2}$~Msol at $z approx 6$). Instead, BHs enter the rapid growth phase at a fixed critical halo virial temperature ($T_{mathrm{vir}} approx 10^{5.6}$~K). We additionally show that major galaxy--galaxy interactions ($mu geq frac{1}{4}$, where $mu$ is the stellar mass ratio) play a substantial role in triggering the rapid growth phase of BHs in the low-redshift Universe, whilst potentially having a lower influence at high redshift. Approximately 40% of BHs that initiate the rapid BH growth phase at $z approx 0$ do so within $pm 0.5$ dynamical times of a major galaxy--galaxy merger, a fourfold increase above what is expected from the background merger rate. We find that minor mergers ($frac{1}{10} leq mu < frac{1}{4}$) have a substantially lower influence in triggering the rapid growth phase at all epochs.
We study the formation of a supermassive black hole (SMBH) binary and the shrinking of the separation of the two holes to sub-pc scales starting from a realistic major merger between two gas-rich spiral galaxies with mass comparable to our Milky Way. The simulations, carried out with the Adaptive Mesh Refinement (AMR) code RAMSES, are capable of resolving separations as small as 0.1 pc. The collision of the two galaxies produces a gravo-turbulent rotating nuclear disk with mass (10^9 Msun) and size (60 pc) in excellent agreement with previous SPH simulations with particle splitting that used a similar setup (Mayer et al. 2007) but were limited to separations of a few parsecs. The AMR results confirm that the two black holes sink rapidly as a result of dynamical friction onto the gaseous background, reaching a separation of 1 pc in less than 10^7 yr. We show that the dynamical friction wake is well resolved by our model and we find good agreement with analytical predictions of the drag force as a function of the Mach number. Below 1 pc, black hole pairing slows down significantly, as the relative velocity between the sinking SMBH becomes highly subsonic and the mass contained within their orbit falls below the mass of the binary itself, rendering dynamical friction ineffective. In this final stage, the black holes have not opened a gap as the gaseous background is highly pressurized in the center. Non-axisymmetric gas torques do not arise to restart sinking in absence of efficient dynamical friction, at variance with previous calculations using idealized equilibrium nuclear disk models. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا