The existence of correlations between the parts of a quantum system on the one hand, and entanglement between them on the other, are different properties. Yet, one intuitively would identify strong $N$-party correlations with $N$-party entanglement in an $N$-partite quantum state. If the local systems are qubits, this intuition is confirmed: The state with the strongest $N$-party correlations is the Greenberger-Horne-Zeilinger (GHZ) state, which does have genuine multipartite entanglement. However, for high-dimensional local systems the state with strongest $N$-party correlations may be a tensor product of Bell states, that is, partially separable. We show this by introducing several novel tools for handling the Bloch representation.