ﻻ يوجد ملخص باللغة العربية
The reaction 11B(p, 3${alpha}$) is relevant for fields as diverse as material science, nuclear structure, nuclear astrophysics, and fusion science. However, for the channel proceeding via the ground state of 8Be, the available cross-section data shows large discrepancies of both normalization and energy scale. The present paper reports on a measurement of the 11B(p, ${alpha_0}$) cross section using an array of modern large area segmented silicon detectors and low beam current on an enriched thin target with the aim of resolving the discrepancies amongst previous measurements.
We present new data for angular distributions and on the cross section ratio of the p + d -> 3He + eta reaction at excess energies of Q = 48.8 MeV and Q = 59.8 MeV. The data have been obtained at the WASA-at-COSY experiment (Forschungszentrum Julich)
As suggested in a Comment by Peters, Phys. Rev. C {bf 96}, 029801 (2017), a correction is applied to the $^{13}$C($alpha$,n)$^{16}$O data of Harissopulos {it et al.}, Phys. Rev. C {bf 72}, 062801(R) (2005). The correction refers to the energy-depende
The total cross section for p-d breakup is studied in terms of the elastic S-matrix through the unitary condition. Calculations using the complex Kohn variational method along with the Pair Correlated Hyperspherical Harmonic basis are presented. The
Kr83m with a short lifetime is an ideal calibration source for liquid xenon or liquid argon detector. The 83mKr isomer can be generated through the decay of Rb83 isotope, and Rb83 is usually produced by proton beams bombarding natural krypton atoms.
A study of the reaction pi+ + d --> p + p has been performed in the energy range of 18 - 44 MeV. Total cross sections and differential cross sections at six angles have been measured at 15 energies with an energy increment of 1 - 2 MeV. This is the m