ﻻ يوجد ملخص باللغة العربية
We analyze quantum fluctuations around black hole solutions to the Jackiw-Teitelboim model. We use harmonic analysis on Euclidean AdS$_2$ to show that the logarithmic corrections to the partition function are determined entirely by quadratic holomorphic differentials, even when conformal symmetry is broken and harmonic modes are no longer true zero modes. Our quantum-corrected partition function agrees precisely with the SYK result. We argue that our effective quantum field theory methods and results generalize to other theories of two-dimensional dilaton gravity.
We aim at formulating a higher-spin gravity theory around AdS$_2$ relevant for holography. As a first step, we investigate its kinematics by identifying the low-dimensional cousins of the standard higher-dimensional structures in higher-spin gravity
The AdS-CFT correspondence is established as a re-assignment of localization to the observables which is consistent with locality and covariance.
A 0+1-dimensional candidate theory for the CFT$_1$ dual to AdS$_2$ is discussed. The quantum mechanical system does not have a ground state that is invariant under the three generators of the conformal group. Nevertheless, we show that there are oper
We consider $alpha$ corrections to the one-loop four-point correlator of the stress-tensor multiplet in $mathcal{N}=4$ super Yang-Mills at order $1/N^4$. Holographically, this is dual to string corrections of the one-loop supergravity amplitude on Ad
We consider duality between type 0B string theory on $AdS_5times S^5$ and the planar CFT on $N$ electric D3-branes coincident with $N$ magnetic D3-branes. It has been argued that this theory is stable up to a critical value of the `t Hooft coupling b