ﻻ يوجد ملخص باللغة العربية
The deleting items theorems of weak law of large numbers (WLLN),strong law of large numbers (SLLN) and central limit theorem (CLT) are derived by substituting partial sum of random variable sequence with deleting items partial sum. We address the background of deleting items limit theory of random variable sequence, discuss the classical limit theory of Chebyshev WLLN, Bernoulli WLLN and Khinchine WLLN with standard mathematical analytical technique, then develop the deleting items theorems of WLLN, SLLN and CLT based on convergence theorems and Slutskys theorem. Our theorems extend the classical limit theory of random variable sequence and provide the construction of some asymptotic bias estimators of sample expectation and variance.
Based on deleting-item central limit theory, the classical Donskers theorem of partial-sum process of independent and identically distributed (i.i.d.) random variables is extended to incomplete partial-sum process. The incomplete partial-sum process
Given ${X_k}$ is a martingale difference sequence. And given another ${Y_k}$ which has dependency within the sequence. Assume ${X_k}$ is independent with ${Y_k}$, we study the properties of the sums of product of two sequences $sum_{k=1}^{n} X_k Y_k$
We obtain Central Limit Theorems in Functional form for a class of time-inhomogeneous interacting random walks on the simplex of probability measures over a finite set. Due to a reinforcement mechanism, the increments of the walks are correlated, for
A classical result for the simple symmetric random walk with $2n$ steps is that the number of steps above the origin, the time of the last visit to the origin, and the time of the maximum height all have exactly the same distribution and converge whe
We derive concentration inequalities for functions of the empirical measure of large random matrices with infinitely divisible entries and, in particular, stable ones. We also give concentration results for some other functionals of these random matr