ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Kernel Learning for Clustering

165   0   0.0 ( 0 )
 نشر من قبل Chieh Wu T
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a deep learning approach for discovering kernels tailored to identifying clusters over sample data. Our neural network produces sample embeddings that are motivated by--and are at least as expressive as--spectral clustering. Our training objective, based on the Hilbert Schmidt Information Criterion, can be optimized via gradient adaptations on the Stiefel manifold, leading to significant acceleration over spectral methods relying on eigendecompositions. Finally, our trained embedding can be directly applied to out-of-sample data. We show experimentally that our approach outperforms several state-of-the-art deep clustering methods, as well as traditional approaches such as $k$-means and spectral clustering over a broad array of real-life and synthetic datasets.



قيم البحث

اقرأ أيضاً

A common approach for compressing NLP networks is to encode the embedding layer as a matrix $Ainmathbb{R}^{ntimes d}$, compute its rank-$j$ approximation $A_j$ via SVD, and then factor $A_j$ into a pair of matrices that correspond to smaller fully-co nnected layers to replace the original embedding layer. Geometrically, the rows of $A$ represent points in $mathbb{R}^d$, and the rows of $A_j$ represent their projections onto the $j$-dimensional subspace that minimizes the sum of squared distances (errors) to the points. In practice, these rows of $A$ may be spread around $k>1$ subspaces, so factoring $A$ based on a single subspace may lead to large errors that turn into large drops in accuracy. Inspired by emph{projective clustering} from computational geometry, we suggest replacing this subspace by a set of $k$ subspaces, each of dimension $j$, that minimizes the sum of squared distances over every point (row in $A$) to its emph{closest} subspace. Based on this approach, we provide a novel architecture that replaces the original embedding layer by a set of $k$ small layers that operate in parallel and are then recombined with a single fully-connected layer. Extensive experimental results on the GLUE benchmark yield networks that are both more accurate and smaller compared to the standard matrix factorization (SVD). For example, we further compress DistilBERT by reducing the size of the embedding layer by $40%$ while incurring only a $0.5%$ average drop in accuracy over all nine GLUE tasks, compared to a $2.8%$ drop using the existing SVD approach. On RoBERTa we achieve $43%$ compression of the embedding layer with less than a $0.8%$ average drop in accuracy as compared to a $3%$ drop previously. Open code for reproducing and extending our results is provided.
Gaussian processes are often considered a gold standard in uncertainty estimation with low dimensional data, but they have difficulty scaling to high dimensional inputs. Deep Kernel Learning (DKL) was introduced as a solution to this problem: a deep feature extractor is used to transform the inputs over which a Gaussian process kernel is defined. However, DKL has been shown to provide unreliable uncertainty estimates in practice. We study why, and show that for certain feature extractors, far-away data points are mapped to the same features as those of training-set points. With this insight we propose to constrain DKLs feature extractor to approximately preserve distances through a bi-Lipschitz constraint, resulting in a feature space favorable to DKL. We obtain a model, DUE, which demonstrates uncertainty quality outperforming previous DKL and single forward pass uncertainty methods, while maintaining the speed and accuracy of softmax neural networks.
In suitably initialized wide networks, small learning rates transform deep neural networks (DNNs) into neural tangent kernel (NTK) machines, whose training dynamics is well-approximated by a linear weight expansion of the network at initialization. S tandard training, however, diverges from its linearization in ways that are poorly understood. We study the relationship between the training dynamics of nonlinear deep networks, the geometry of the loss landscape, and the time evolution of a data-dependent NTK. We do so through a large-scale phenomenological analysis of training, synthesizing diverse measures characterizing loss landscape geometry and NTK dynamics. In multiple neural architectures and datasets, we find these diverse measures evolve in a highly correlated manner, revealing a universal picture of the deep learning process. In this picture, deep network training exhibits a highly chaotic rapid initial transient that within 2 to 3 epochs determines the final linearly connected basin of low loss containing the end point of training. During this chaotic transient, the NTK changes rapidly, learning useful features from the training data that enables it to outperform the standard initial NTK by a factor of 3 in less than 3 to 4 epochs. After this rapid chaotic transient, the NTK changes at constant velocity, and its performance matches that of full network training in 15% to 45% of training time. Overall, our analysis reveals a striking correlation between a diverse set of metrics over training time, governed by a rapid chaotic to stable transition in the first few epochs, that together poses challenges and opportunities for the development of more accurate theories of deep learning.
The generalization properties of Gaussian processes depend heavily on the choice of kernel, and this choice remains a dark art. We present the Neural Kernel Network (NKN), a flexible family of kernels represented by a neural network. The NKN architec ture is based on the composition rules for kernels, so that each unit of the network corresponds to a valid kernel. It can compactly approximate compositional kernel structures such as those used by the Automatic Statistician (Lloyd et al., 2014), but because the architecture is differentiable, it is end-to-end trainable with gradient-based optimization. We show that the NKN is universal for the class of stationary kernels. Empirically we demonstrate pattern discovery and extrapolation abilities of NKN on several tasks that depend crucially on identifying the underlying structure, including time series and texture extrapolation, as well as Bayesian optimization.
Semi-supervised clustering is the task of clustering data points into clusters where only a fraction of the points are labelled. The true number of clusters in the data is often unknown and most models require this parameter as an input. Dirichlet pr ocess mixture models are appealing as they can infer the number of clusters from the data. However, these models do not deal with high dimensional data well and can encounter difficulties in inference. We present a novel nonparameteric Bayesian kernel based method to cluster data points without the need to prespecify the number of clusters or to model complicated densities from which data points are assumed to be generated from. The key insight is to use determinants of submatrices of a kernel matrix as a measure of how close together a set of points are. We explore some theoretical properties of the model and derive a natural Gibbs based algorithm with MCMC hyperparameter learning. The model is implemented on a variety of synthetic and real world data sets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا