ﻻ يوجد ملخص باللغة العربية
We investigate valuated matroids with an additional algebraic structure on their residue matroids. We encode the structure in terms of representability over stringent hyperfields. A hyperfield $H$ is {em stringent} if $aboxplus b$ is a singleton unless $a=-b$, for all $a,bin H$. By a construction of Marc Krasner, each valued field gives rise to a stringent hyperfield. We show that if $H$ is a stringent skew hyperfield, then the vectors of any weak matroid over $H$ are orthogonal to its covectors, and we deduce that weak matroids over $H$ are strong matroids over $H$. Also, we present vector axioms for matroids over stringent skew hyperfields which generalize the vector axioms for oriented matroids and valuated matroids.
We introduce delta-graphic matroids, which are matroids whose bases form graphic delta-matroids. The class of delta-graphic matroids contains graphic matroids as well as cographic matroids and is a proper subclass of the class of regular matroids. We
Kapranovs theorem is a foundational result in tropical geometry. It states that the set of tropicalisations of points on a hypersurface coincides precisely with the tropical variety of the tropicalisation of the defining polynomial. The aim of this p
Baranys colorful generalization of Caratheodorys Theorem combines geometrical and combinatorial constraints. Kalai-Meshulam (2005) and Holmsen (2016) generalized Baranys theorem by replacing color classes with matroid constraints. In this note, we ob
The class of quasi-graphic matroids recently introduced by Geelen, Gerards, and Whittle generalises each of the classes of frame matroids and lifted-graphic matroids introduced earlier by Zaslavsky. For each biased graph $(G, mathcal B)$ Zaslavsky de
We construct minimal cellular resolutions of squarefree monomial ideals arising from hyperplane arrangements, matroids and oriented matroids. These are Stanley-Reisner ideals of complexes of independent sets, and of triangulations of Lawrence matroid