ترغب بنشر مسار تعليمي؟ اضغط هنا

UdS Submission for the WMT 19 Automatic Post-Editing Task

82   0   0.0 ( 0 )
 نشر من قبل Hongfei Xu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we describe our submission to the English-German APE shared task at WMT 2019. We utilize and adapt an NMT architecture originally developed for exploiting context information to APE, implement this in our own transformer model and explore joint training of the APE task with a de-noising encoder.



قيم البحث

اقرأ أيضاً

Users of machine translation (MT) may want to ensure the use of specific lexical terminologies. While there exist techniques for incorporating terminology constraints during inference for MT, current APE approaches cannot ensure that they will appear in the final translation. In this paper, we present both autoregressive and non-autoregressive models for lexically constrained APE, demonstrating that our approach enables preservation of 95% of the terminologies and also improves translation quality on English-German benchmarks. Even when applied to lexically constrained MT output, our approach is able to improve preservation of the terminologies. However, we show that our models do not learn to copy constraints systematically and suggest a simple data augmentation technique that leads to improved performance and robustness.
We describe Facebooks multilingual model submission to the WMT2021 shared task on news translation. We participate in 14 language directions: English to and from Czech, German, Hausa, Icelandic, Japanese, Russian, and Chinese. To develop systems cove ring all these directions, we focus on multilingual models. We utilize data from all available sources --- WMT, large-scale data mining, and in-domain backtranslation --- to create high quality bilingual and multilingual baselines. Subsequently, we investigate strategies for scaling multilingual model size, such that one system has sufficient capacity for high quality representations of all eight languages. Our final submission is an ensemble of dense and sparse Mixture-of-Expert multilingual translation models, followed by finetuning on in-domain news data and noisy channel reranking. Compared to previous years winning submissions, our multilingual system improved the translation quality on all language directions, with an average improvement of 2.0 BLEU. In the WMT2021 task, our system ranks first in 10 directions based on automatic evaluation.
Devising metrics to assess translation quality has always been at the core of machine translation (MT) research. Traditional automatic reference-based metrics, such as BLEU, have shown correlations with human judgements of adequacy and fluency and ha ve been paramount for the advancement of MT system development. Crowd-sourcing has popularised and enabled the scalability of metrics based on human judgements, such as subjective direct assessments (DA) of adequacy, that are believed to be more reliable than reference-based automatic metrics. Finally, task-based measurements, such as post-editing time, are expected to provide a more detailed evaluation of the usefulness of translations for a specific task. Therefore, while DA averages adequacy judgements to obtain an appraisal of (perceived) quality independently of the task, and reference-based automatic metrics try to objectively estimate quality also in a task-independent way, task-based metrics are measurements obtained either during or after performing a specific task. In this paper we argue that, although expensive, task-based measurements are the most reliable when estimating MT quality in a specific task; in our case, this task is post-editing. To that end, we report experiments on a dataset with newly-collected post-editing indicators and show their usefulness when estimating post-editing effort. Our results show that task-based metrics comparing machine-translated and post-edit
The quality of machine translation systems has dramatically improved over the last decade, and as a result, evaluation has become an increasingly challenging problem. This paper describes our contribution to the WMT 2020 Metrics Shared Task, the main benchmark for automatic evaluation of translation. We make several submissions based on BLEURT, a previously published metric based on transfer learning. We extend the metric beyond English and evaluate it on 14 language pairs for which fine-tuning data is available, as well as 4 zero-shot language pairs, for which we have no labelled examples. Additionally, we focus on English to German and demonstrate how to combine BLEURTs predictions with those of YiSi and use alternative reference translations to enhance the performance. Empirical results show that the models achieve competitive results on the WMT Metrics 2019 Shared Task, indicating their promise for the 2020 edition.
82 - Reid Pryzant 2021
Pronouns are important determinants of a texts meaning but difficult to translate. This is because pronoun choice can depend on entities described in previous sentences, and in some languages pronouns may be dropped when the referent is inferrable fr om the context. These issues can lead Neural Machine Translation (NMT) systems to make critical errors on pronouns that impair intelligibility and even reinforce gender bias. We investigate the severity of this pronoun issue, showing that (1) in some domains, pronoun choice can account for more than half of a NMT systems errors, and (2) pronouns have a disproportionately large impact on perceived translation quality. We then investigate a possible solution: fine-tuning BERT on a pronoun prediction task using chunks of source-side sentences, then using the resulting classifier to repair the translations of an existing NMT model. We offer an initial case study of this approach for the Japanese-English language pair, observing that a small number of translations are significantly improved according to human evaluators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا