ﻻ يوجد ملخص باللغة العربية
The learning rate warmup heuristic achieves remarkable success in stabilizing training, accelerating convergence and improving generalization for adaptive stochastic optimization algorithms like RMSprop and Adam. Here, we study its mechanism in details. Pursuing the theory behind warmup, we identify a problem of the adaptive learning rate (i.e., it has problematically large variance in the early stage), suggest warmup works as a variance reduction technique, and provide both empirical and theoretical evidence to verify our hypothesis. We further propose RAdam, a new variant of Adam, by introducing a term to rectify the variance of the adaptive learning rate. Extensive experimental results on image classification, language modeling, and neural machine translation verify our intuition and demonstrate the effectiveness and robustness of our proposed method. All implementations are available at: https://github.com/LiyuanLucasLiu/RAdam.
Adaptive Momentum Estimation (Adam), which combines Adaptive Learning Rate and Momentum, is the most popular stochastic optimizer for accelerating the training of deep neural networks. However, empirically Adam often generalizes worse than Stochastic
We study two time-scale linear stochastic approximation algorithms, which can be used to model well-known reinforcement learning algorithms such as GTD, GTD2, and TDC. We present finite-time performance bounds for the case where the learning rate is
Topic models have emerged as fundamental tools in unsupervised machine learning. Most modern topic modeling algorithms take a probabilistic view and derive inference algorithms based on Latent Dirichlet Allocation (LDA) or its variants. In contrast,
Adam is shown not being able to converge to the optimal solution in certain cases. Researchers recently propose several algorithms to avoid the issue of non-convergence of Adam, but their efficiency turns out to be unsatisfactory in practice. In this
The main theme of this work is a unifying algorithm, textbf{L}ooptextbf{L}ess textbf{S}ARAH (L2S) for problems formulated as summation of $n$ individual loss functions. L2S broadens a recently developed variance reduction method known as SARAH. To fi