ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge density wave with anomalous temperature dependence in UPt2Si2

184   0   0.0 ( 0 )
 نشر من قبل Jooseop Lee
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using single crystal neutron and x-ray diffraction, we discovered a charge density wave (CDW) below 320 K, which accounts for the long-sought origin of the heat capacity and resistivity anomalies in UPt2Si2. The modulation wavevector, Qmod, is intriguingly similar to the Fermi surface nesting wavevector of URu2Si2. Qmod shows an unusual temperature dependence, shifting from commensurate to incommensurate position upon cooling and becoming locked at ~ (0.42 0 0) near 180 K. Bulk measurements indicate a cross-over toward a correlated coherent state around the same temperature, suggesting an interplay between the CDW and Kondo-lattice-like coherence before coexisting antiferromagnetic order sets in at TN = 35 K.



قيم البحث

اقرأ أيضاً

Although all superconducting cuprates display charge-ordering tendencies, their low-temperature properties are distinct, impeding efforts to understand the phenomena within a single conceptual framework. While some systems exhibit stripes of charge a nd spin, with a locked periodicity, others host charge density waves (CDWs) without any obviously related spin order. Here we use resonant inelastic x-ray scattering (RIXS) to follow the evolution of charge correlations in the canonical stripe ordered cuprate La$_{1.875}$Ba$_{0.125}$CuO$_{4}$ (LBCO~$1/8$) across its ordering transition. We find that high-temperature charge correlations are unlocked from the wavevector of the spin correlations, signaling analogies to CDW phases in various other cuprates. This indicates that stripe order at low temperatures is stabilized by the coupling of otherwise independent charge and spin density waves, with important implications for the relation between charge and spin correlations in the cuprates.
92 - I. Vinograd , R. Zhou , M. Hirata 2021
In order to identify the mechanism responsible for the formation of charge-density waves (CDW) in cuprate superconductors, it is important to understand which aspects of the CDWs microscopic structure are generic and which are material-dependent. Her e, we show that, at the local scale probed by NMR, long-range CDW order in YBa2Cu3Oy is unidirectional with a commensurate period of three unit cells (lambda = 3b), implying that the incommensurability found in X-ray scattering is ensured by phase slips (discommensurations). Furthermore, NMR spectra reveal a predominant oxygen character of the CDW with an out-of-phase relationship between certain lattice sites but no specific signature of a secondary CDW with lambda = 6b associated with a putative pair-density wave. These results shed light on universal aspects of the cuprate CDW. In particular, its spatial profile appears to generically result from the interplay between an incommensurate tendency at long length scales, possibly related to properties of the Fermi surface, and local commensuration effects, due to electron-electron interactions or lock-in to the lattice.
The discovery of charge-density wave (CDW)-related effects in the resonant inelastic x-ray scattering (RIXS) spectra of cuprates holds the tantalizing promise of clarifying the interactions that stabilize the electronic order. Here, we report a compr ehensive RIXS study of La2-xSrxCuO4 (LSCO) finding that CDW effects persist up to a remarkably high doping level of x = 0.21 before disappearing at x = 0.25. The inelastic excitation spectra remain essentially unchanged with doping despite crossing a topological transition in the Fermi surface. This indicates that the spectra contain little or no direct coupling to electronic excitations near the Fermi surface, rather they are dominated by the resonant cross-section for phonons and CDW-induced phonon-softening. We interpret our results in terms of a CDW that is generated by strong correlations and a phonon response that is driven by the CDW-induced modification of the lattice.
248 - J. A. Rosen , R. Comin , G. Levy 2011
Neutron and x-ray scattering experiments have provided mounting evidence for spin and charge ordering phenomena in underdoped cuprates. These range from early work on stripe correlations in Nd-LSCO to the latest discovery of charge-density-waves in Y BCO. Both phenomena are characterized by a pronounced dependence on doping, temperature, and an externally applied magnetic field. Here we show that these electron-lattice instabilities exhibit also a previously unrecognized bulk-surface dichotomy. Surface-sensitive electronic and structural probes uncover a temperature-dependent evolution of the CuO2 plane band dispersion and apparent Fermi pockets in underdoped Bi2201, which is directly associated with an hitherto-undetected strong temperature dependence of the incommensurate superstructure periodicity below 130K. In stark contrast, the structural modulation revealed by bulk-sensitive probes is temperature independent. These findings point to a surface-enhanced incipient charge-density-wave instability, driven by Fermi surface nesting. This discovery is of critical importance in the interpretation of single-particle spectroscopy data and establishes the surface of cuprates and other complex oxides as a rich playground for the study of electronically soft phases.
91 - X. M. Chen , C. Mazzoli , Y. Cao 2018
Although charge density wave (CDW) correlations appear to be a ubiquitous feature of the superconducting cuprates, their disparate properties suggest a crucial role for coupling or pinning of the CDW to lattice deformations and disorder. While diffra ction intensities can demonstrate the occurrence of CDW domain formation, the lack of scattering phase information has limited our understanding of this process. Here, we report coherent resonant x-ray speckle correlation analysis, which directly determines the reproducibility of CDW domain patterns in La1.875Ba0.125CuO4 (LBCO 1/8) with thermal cycling. While CDW order is only observed below 54 K, where a structural phase transition results in equivalent Cu-O bonds, we discover remarkably reproducible CDW domain memory upon repeated cycling to temperatures well above that transition. That memory is only lost on cycling across the transition at 240(3) K that restores the four-fold symmetry of the copper-oxide planes. We infer that the structural-domain twinning pattern that develops below 240 K determines the CDW pinning landscape below 54 K. These results open a new view into the complex coupling between charge and lattice degrees of freedom in superconducting cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا