ترغب بنشر مسار تعليمي؟ اضغط هنا

Localized Transient Jamming in Discontinuous Shear Thickening

59   0   0.0 ( 0 )
 نشر من قبل Vikram Rathee Prof. Urbach Lab
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report direct measurements of spatially resolved surface stresses over the entire surface of a dense suspension during discontinuous shear thickening (DST) using Boundary Stress Microscopy (BSM) in a parallel-plate rheometer. We find that large fluctuations in the bulk rheological response at the onset of DST are the result of localized transitions to a state with very high stress, consistent with a fully jammed solid that makes direct contact with the shearing boundaries. That jammed solid like phase (SLP) is rapidly fractured, producing two separate SLPs that propagate in opposite directions. By comparing the speed of propagation of the SLPs with the motion of the confining plates, we deduce that one remains in contact with the bottom boundary, and another remains in contact with the top. These regions grow, bifurcate, and eventually interact and decay in a complex manner that depends on the measurement conditions (constant shear rate vs constant stress). In constant applied stress mode, BSM directly reveals dramatic stress fluctuations that are completely missed in standard bulk rheology.



قيم البحث

اقرأ أيضاً

We report experimental and computational observations of dynamic contact networks for colloidal suspensions undergoing shear thickening. The dense suspensions are comprised of sterically stabilized poly(methyl methacrylate) hard sphere colloids that are spherically symmetric and have varied surface roughness. Confocal rheometry and dissipative particle dynamics simulations show that the shear thickening strength scales exponentially with the scaled deficit contact number and the scaled jamming distance. Rough colloids, which experience additional tangential and rolling constraints, require an average of 1.5 - 2 fewer particle contacts as compared to smooth colloids, in order to generate the same shear thickening strength. This is because the surface roughness enhances geometric friction in a way that the rough colloids do not experience a large change in the free volume near the jamming point. In contrast, smooth colloids must undergo significant reduction in the free volume to support an equivalent shear stress. The available free volume for different colloid roughness is related to the deficiency from the maximum number of nearest neighbors at jamming under shear. Our results further suggest that the force per contact is different for particles with different morphologies.
Dynamic particle-scale numerical simulations are used to show that the shear thickening observed in dense colloidal, or Brownian, suspensions is of a similar nature to that observed in non-colloidal suspensions, i.e., a stress-induced transition from a flow of lubricated near-contacting particles to a flow of a frictionally contacting network of particles. Abrupt (or discontinuous) shear thickening is found to be a geometric rather than hydrodynamic phenomenon; it stems from the strong sensitivity of the jamming volume fraction to the nature of contact forces between suspended particles. The thickening obtained in a colloidal suspension of purely hard frictional spheres is qualitatively similar to experimental observations. However, the agreement cannot be made quantitative with only hydrodynamics, frictional contacts and Brownian forces. Therefore the role of a short-range repulsive potential mimicking the stabilization of actual suspensions on the thickening is studied. The effects of Brownian and repulsive forces on the onset stress can be combined in an additive manner. The simulations including Brownian and stabilizing forces show excellent agreement with experimental data for the viscosity $eta$ and the second normal stress difference $N_2$.
Discontinuous shear thickening (DST) observed in many dense athermal suspensions has proven difficult to understand and to reproduce by numerical simulation. By introducing a numerical scheme including both relevant hydrodynamic interactions and gran ularlike contacts, we show that contact friction is essential for having DST. Above a critical volume fraction, we observe the existence of two states: a low viscosity, contactless (hence, frictionless) state, and a high viscosity frictional shear jammed state. These two states are separated by a critical shear stress, associated with a critical shear rate where DST occurs. The shear jammed state is reminiscent of the jamming phase of granular matter. Continuous shear thickening is seen as a lower volume fraction vestige of the jamming transition.
136 - D.A. Head , A. Ajdari , M.E. Cates 2001
We investigate shear thickening and jamming within the framework of a family of spatially homogeneous, scalar rheological models. These are based on the `soft glassy rheology model of Sollich et al. [Phys. Rev. Lett. 78, 2020 (1997)], but with an eff ective temperature x that is a decreasing function of either the global stress sigma or the local strain l. For appropiate x=x(sigma), it is shown that the flow curves include a region of negative slope, around which the stress exhibits hysteresis under a cyclically varying imposed strain rate gd. A subclass of these x(sigma) have flow curves that touch the gd=0 axis for a finite range of stresses; imposing a stress from this range {em jams} the system, in the sense that the strain gamma creeps only logarithmically with time t, gamma(t)simln t. These same systems may produce a finite asymptotic yield stress under an imposed strain, in a manner that depends on the entire stress history of the sample, a phenomenon we refer to as history--dependent jamming. In contrast, when x=x(l) the flow curves are always monotonic, but we show that some x(l) generate an oscillatory strain response for a range of steady imposed stresses. Similar spontaneous oscillations are observed in a simplified model with fewer degrees of freedom. We discuss this result in relation to the temporal instabilities observed in rheological experiments and stick--slip behaviour found in other contexts, and comment on the possible relationship with `delay differential equations that are known to produce oscillations and chaos.
150 - Matthieu Wyart , Mike Cates 2013
A consensus is emerging that discontinuous shear thickening (DST) in dense suspensions marks a transition from a flow state where particles remain well separated by lubrication layers, to one dominated by frictional contacts. We show here that reason able assumptions about contact proliferation predict two distinct types of DST in the absence of inertia. The first occurs at densities above the jamming point of frictional particles; here the thickened state is completely jammed and (unless particles deform) cannot flow without inhomogeneity or fracture. The second regime shows strain- rate hysteresis and arises at somewhat lower densities where the thickened phase flows smoothly. DST is predicted to arise when finite-range repulsions defer contact formation until a characteristic stress level is exceeded.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا