ترغب بنشر مسار تعليمي؟ اضغط هنا

Gradient Descent Finds Global Minima for Generalizable Deep Neural Networks of Practical Sizes

138   0   0.0 ( 0 )
 نشر من قبل Kenji Kawaguchi
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we theoretically prove that gradient descent can find a global minimum of non-convex optimization of all layers for nonlinear deep neural networks of sizes commonly encountered in practice. The theory developed in this paper only requires the practical degrees of over-parameterization unlike previous theories. Our theory only requires the number of trainable parameters to increase linearly as the number of training samples increases. This allows the size of the deep neural networks to be consistent with practice and to be several orders of magnitude smaller than that required by the previous theories. Moreover, we prove that the linear increase of the size of the network is the optimal rate and that it cannot be improved, except by a logarithmic factor. Furthermore, deep neural networks with the trainability guarantee are shown to generalize well to unseen test samples with a natural dataset but not a random dataset.



قيم البحث

اقرأ أيضاً

Gradient descent finds a global minimum in training deep neural networks despite the objective function being non-convex. The current paper proves gradient descent achieves zero training loss in polynomial time for a deep over-parameterized neural ne twork with residual connections (ResNet). Our analysis relies on the particular structure of the Gram matrix induced by the neural network architecture. This structure allows us to show the Gram matrix is stable throughout the training process and this stability implies the global optimality of the gradient descent algorithm. We further extend our analysis to deep residual convolutional neural networks and obtain a similar convergence result.
Natural gradient descent has proven effective at mitigating the effects of pathological curvature in neural network optimization, but little is known theoretically about its convergence properties, especially for emph{nonlinear} networks. In this wor k, we analyze for the first time the speed of convergence of natural gradient descent on nonlinear neural networks with squared-error loss. We identify two conditions which guarantee efficient convergence from random initializations: (1) the Jacobian matrix (of networks output for all training cases with respect to the parameters) has full row rank, and (2) the Jacobian matrix is stable for small perturbations around the initialization. For two-layer ReLU neural networks, we prove that these two conditions do in fact hold throughout the training, under the assumptions of nondegenerate inputs and overparameterization. We further extend our analysis to more general loss functions. Lastly, we show that K-FAC, an approximate natural gradient descent method, also converges to global minima under the same assumptions, and we give a bound on the rate of this convergence.
196 - Jiaming Xu , Hanjing Zhu 2021
There has been a recent surge of interest in understanding the convergence of gradient descent (GD) and stochastic gradient descent (SGD) in overparameterized neural networks. Most previous works assume that the training data is provided a priori in a batch, while less attention has been paid to the important setting where the training data arrives in a stream. In this paper, we study the streaming data setup and show that with overparamterization and random initialization, the prediction error of two-layer neural networks under one-pass SGD converges in expectation. The convergence rate depends on the eigen-decomposition of the integral operator associated with the so-called neural tangent kernel (NTK). A key step of our analysis is to show a random kernel function converges to the NTK with high probability using the VC dimension and McDiarmids inequality.
We present a probabilistic variant of the recently introduced maxout unit. The success of deep neural networks utilizing maxout can partly be attributed to favorable performance under dropout, when compared to rectified linear units. It however also depends on the fact that each maxout unit performs a pooling operation over a group of linear transformations and is thus partially invariant to changes in its input. Starting from this observation we ask the question: Can the desirable properties of maxout units be preserved while improving their invariance properties ? We argue that our probabilistic maxout (probout) units successfully achieve this balance. We quantitatively verify this claim and report classification performance matching or exceeding the current state of the art on three challenging image classification benchmarks (CIFAR-10, CIFAR-100 and SVHN).
Recently, several studies have proven the global convergence and generalization abilities of the gradient descent method for two-layer ReLU networks. Most studies especially focused on the regression problems with the squared loss function, except fo r a few, and the importance of the positivity of the neural tangent kernel has been pointed out. On the other hand, the performance of gradient descent on classification problems using the logistic loss function has not been well studied, and further investigation of this problem structure is possible. In this work, we demonstrate that the separability assumption using a neural tangent model is more reasonable than the positivity condition of the neural tangent kernel and provide a refined convergence analysis of the gradient descent for two-layer networks with smooth activations. A remarkable point of our result is that our convergence and generalization bounds have much better dependence on the network width in comparison to related studies. Consequently, our theory provides a generalization guarantee for less over-parameterized two-layer networks, while most studies require much higher over-parameterization.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا