ﻻ يوجد ملخص باللغة العربية
We report on the demonstration of the first axial AlInN ultraviolet core-shell nanowire light-emitting diodes with highly stable emission in the UV wavelength range. During the epitaxial growth of AlInN layer, an AlInN shell is spontaneously formed, resulted in the reduced nonradiative recombination on nanowire surface. The AlInN nanowires exhibit high internal quantum efficiency of ~ 52% at room temperature for emission at 295nm. The peak emission wavelength can be varied from 290 nm to 355 nm by changing the growth condition. Moreover, significantly strong transverse magnetic (TM) polarized emission is recorded which is ~ 4 times stronger compared to the transverse electric (TE) polarized light at 295 nm. This study provides alternative approach for the fabrication of new type of high-performance ultraviolet light-emitters.
We report on the illustration of the first electron blocking layer (EBL) free AlInN nanowire light-emitting diodes (LEDs) operating in the deep ultraviolet (DUV) wavelength region (sub-250 nm). We have systematically analyzed the results using APSYS
This article presents the use of flexible carbon substrates for the growth of III-nitride nanowire light emitters. A dense packing of gallium nitride nanowires were grown on a carbon paper substrate. The nanowires grew predominantly along the a-plane
We present the combined analysis of the electroluminescence (EL) as well as the current-voltage (I-V) behavior of single, freestanding (In,Ga)N/GaN nanowire (NW) light-emitting diodes (LEDs) in an unprocessed, self-assembled ensemble grown by molecul
Solution-processed planar perovskite light-emitting diodes (LEDs) promise high-performance and cost-effective electroluminescent (EL) devices ideal for large-area display and lighting applications. Exploiting emission layers with high ratios of horiz
We demonstrate cryogenic, electrically-injected, waveguide-coupled Si light-emitting diodes (LEDs) operating at 1.22 $mu$m. The active region of the LED consists of W centers implanted in the intrinsic region of a $p$-$i$-$n$ diode. The LEDs are inte