ﻻ يوجد ملخص باللغة العربية
In ergodic quantum systems, physical observables have a non-relaxing component if they overlap with a conserved quantity. In interacting microscopic models, how to isolate the non-relaxing component is unclear. We compute exact dynamical correlators governed by a Hamiltonian composed of two large interacting random matrices, $H=A+B$. We analytically obtain the late-time value of $langle A(t) A(0) rangle$; this quantifies the non-relaxing part of the observable $A$. The relaxation to this value is governed by a power-law determined by the spectrum of the Hamiltonian $H$, independent of the observable $A$. For Gaussian matrices, we further compute out-of-time-ordered-correlators (OTOCs) and find that the existence of a non-relaxing part of $A$ leads to modifications of the late time values and exponents. Our results follow from exact resummation of a diagrammatic expansion and hyperoperator techniques.
Quantum entanglement and its main quantitative measures, the entanglement entropy and entanglement negativity, play a central role in many body physics. An interesting twist arises when the system considered has symmetries leading to conserved quanti
There are problems with defining the thermodynamic limit of systems with long-range interactions; as a result, the thermodynamic behavior of these types of systems is anomalous. In the present work, we review some concepts from both extensive and non
We extend random matrix theory to consider randomly interacting spin systems with spatial locality. We develop several methods by which arbitrary correlators may be systematically evaluated in a limit where the local Hilbert space dimension $N$ is la
The quantum dynamics of an ensemble of interacting electrons in an array of random scatterers is treated using a new numerical approach for the calculation of average values of quantum operators and time correlation functions in the Wigner representa
We study quantum transport after an inhomogeneous quantum quench in a free fermion lattice system in the presence of a localised defect. Using a new rigorous analytical approach for the calculation of large time and distance asymptotics of physical o