ﻻ يوجد ملخص باللغة العربية
The E12-14-012 experiment performed at Jefferson Lab Hall A has collected inclusive electron-scattering data for different targets at the kinematics corresponding to beam energy 2.222 GeV and scattering angle 15.54 deg. Here we present a comprehensive analysis of the collected data and compare the double-differential cross sections for inclusive scattering of electrons, extracted using solid targets (aluminum, carbon, and titanium) and a closed argon-gas cell. The data extend over broad range of energy transfer, where quasielastic interaction, Delta-resonance excitation, and inelastic scattering yield contributions to the cross section. The double-differential cross sections are reported with high precision (~3%) for all targets over the covered kinematic range.
A Jefferson Lab experiment proposal was discussed in this talk. The experiment is designed to measure the beam-target double-spin asymmetries $A_{1n}^h$ in semi-inclusive deep-inelastic $vec n({vec e}, e^prime pi^+)X$ and $vec n({vec e}, e^prime pi^-
This paper reports the measurement of polarized and unpolarized cross sections for the ep -> ep reaction, which is comprised of Deeply Virtual Compton Scattering (DVCS) and Bethe-Heitler (BH) processes, at an electron beam energy of 5.88 GeV at the T
APEX is an experiment at Thomas Jefferson National Accelerator Facility (JLab) in Virginia, USA, that searches for a new gauge boson ($A^prime$) with sub-GeV mass and coupling to ordinary matter of $g^prime sim (10^{-6} - 10^{-2}) e$. Electrons impin
The success of the ambitious programs of both long- and short-baseline neutrino-oscillation experiments employing liquid-argon time-projection chambers will greatly rely on the precision with which the weak response of the argon nucleus can be estima
To probe CP violation in the leptonic sector using GeV energy neutrino beams in current and future experiments using argon detectors, precise models of the complex underlying neutrino and antineutrino interactions are needed. The E12-14-012 experimen