ترغب بنشر مسار تعليمي؟ اضغط هنا

A quantum algorithm to count weighted ground states of classical spin Hamiltonians

139   0   0.0 ( 0 )
 نشر من قبل Bhuvanesh Sundar
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ground state counting plays an important role in several applications in science and engineering, from estimating residual entropy in physical systems, to bounding engineering reliability and solving combinatorial counting problems. While quantum algorithms such as adiabatic quantum optimization (AQO) and quantum approximate optimization (QAOA) can minimize Hamiltonians, they are inadequate for counting ground states. We modify AQO and QAOA to count the ground states of arbitrary classical spin Hamiltonians, including counting ground states with arbitrary nonnegative weights attached to them. As a concrete example, we show how our method can be used to count the weighted fraction of edge covers on graphs, with user-specified confidence on the relative error of the weighted count, in the asymptotic limit of large graphs. We find the asymptotic computational time complexity of our algorithms, via analytical predictions for AQO and numerical calculations for QAOA, and compare with the classical optimal Monte Carlo algorithm (OMCS), as well as a modified Grovers algorithm. We show that for large problem instances with small weights on the ground states, AQO does not have a quantum speedup over OMCS for a fixed error and confidence, but QAOA has a sub-quadratic speedup on a broad class of numerically simulated problems. Our work is an important step in approaching general ground-state counting problems beyond those that can be solved with Grovers algorithm. It offers algorithms that can employ noisy intermediate-scale quantum devices for solving ground state counting problems on small instances, which can help in identifying more problem classes with quantum speedups.



قيم البحث

اقرأ أيضاً

Traditional quantum physics solves ground states for a given Hamiltonian, while quantum information science asks for the existence and construction of certain Hamiltonians for given ground states. In practical situations, one would be mainly interest ed in local Hamiltonians with certain interaction patterns, such as nearest neighbour interactions on some type of lattices. A necessary condition for a space $V$ to be the ground-state space of some local Hamiltonian with a given interaction pattern, is that the maximally mixed state supported on $V$ is uniquely determined by its reduced density matrices associated with the given pattern, based on the principle of maximum entropy. However, it is unclear whether this condition is in general also sufficient. We examine the situations for the existence of such a local Hamiltonian to have $V$ satisfying the necessary condition mentioned above as its ground-state space, by linking to faces of the convex body of the local reduced states. We further discuss some methods for constructing the corresponding local Hamiltonians with given interaction patterns, mainly from physical points of view, including constructions related to perturbation methods, local frustration-free Hamiltonians, as well as thermodynamical ensembles.
We advocate for a simple multipole expansion of the polarization density matrix. The resulting multipoles are used to construct bona fide quasiprobability distributions that appear as a sum of successive moments of the Stokes variables; the first one corresponding to the classical picture on the Poincare sphere. We employ the particular case of the $Q$ function to formulate a whole hierarchy of measures that properly assess higher-order polarization correlations.
193 - Lior Eldar , Aram W. Harrow 2015
Ground states of local Hamiltonians can be generally highly entangled: any quantum circuit that generates them (even approximately) must be sufficiently deep to allow coupling (entanglement) between any pair of qubits. Until now this property was not known to be robust - the marginals of such states to a subset of the qubits containing all but a small constant fraction of them may be only locally entangled, and hence approximable by shallow quantum circuits. In this work we construct a family of 16-local Hamiltonians for which any 1-10^{-9} fraction of qubits of any ground state must be highly entangled. This provides evidence that quantum entanglement is not very fragile, and perhaps our intuition about its instability is an artifact of considering local Hamiltonians which are not only local but spatially local. Formally, it provides positive evidence for two wide-open conjectures in condensed-matter physics and quantum complexity theory which are the qLDPC conjecture, positing the existence of good quantum LDPC codes, and the NLTS conjecture due to Freedman and Hastings positing the existence of local Hamiltonians in which any low-energy state is highly-entangled. Our Hamiltonian is based on applying the hypergraph product by Tillich and Zemor to a classical locally testable code. A key tool in our proof is a new lower bound on the vertex expansion of the output of low-depth quantum circuits, which may be of independent interest.
We present a quantum algorithm for simulating the dynamics of Hamiltonians that are not necessarily sparse. Our algorithm is based on the input model where the entries of the Hamiltonian are stored in a data structure in a quantum random access memor y (qRAM) which allows for the efficient preparation of states that encode the rows of the Hamiltonian. We use a linear combination of quantum walks to achieve poly-logarithmic dependence on precision. The time complexity of our algorithm, measured in terms of the circuit depth, is $O(tsqrt{N}|H|,mathrm{polylog}(N, t|H|, 1/epsilon))$, where $t$ is the evolution time, $N$ is the dimension of the system, and $epsilon$ is the error in the final state, which we call precision. Our algorithm can be directly applied as a subroutine for unitary implementation and quantum linear systems solvers, achieving $widetilde{O}(sqrt{N})$ dependence for both applications.
We introduce a framework for constructing a quantum error correcting code from any classical error correcting code. This includes CSS codes and goes beyond the stabilizer formalism to allow quantum codes to be constructed from classical codes that ar e not necessarily linear or self-orthogonal (Fig. 1). We give an algorithm that explicitly constructs quantum codes with linear distance and constant rate from classical codes with a linear distance and rate. As illustrations for small size codes, we obtain Steanes $7-$qubit code uniquely from Hammings [7,4,3] code, and obtain other error detecting quantum codes from other explicit classical codes of length 4 and 6. Motivated by quantum LDPC codes and the use of physics to protect quantum information, we introduce a new 2-local frustration free quantum spin chain Hamiltonian whose ground space we analytically characterize completely. By mapping classical codewords to basis states of the ground space, we utilize our framework to demonstrate that the ground space contains explicit quantum codes with linear distance. This side-steps the Bravyi-Terhal no-go theorem because our work allows for more general quantum codes beyond the stabilizer and/or linear codes. We hesitate to call this an example of {it subspace} quantum LDPC code with linear distance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا