ﻻ يوجد ملخص باللغة العربية
The distance transform algorithm is popular in computer vision and machine learning domains. It is used to minimize quadratic functions over a grid of points. Felzenszwalb and Huttenlocher (2004) describe an O(N) algorithm for computing the minimum distance transform for quadratic functions. Their algorithm works by computing the lower envelope of a set of parabolas defined on the domain of the function. In this work, we describe an average time O(N) algorithm for maximizing this function by computing the upper envelope of a set of parabolas. We study the duality of the minimum and maximum distance transforms, give a correctness proof of the algorithm and its runtime, and discuss potential applications.
Recently Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li and Frank Stephan proposed a quasi-polynomial time algorithm for parity games. This paper proposes a short proof of correctness of their algorithm.
We present a recursive formulation of the Horn algorithm for deciding the satisfiability of propositional clauses. The usual presentations in imperative pseudo-code are informal and not suitable for simple proofs of its main properties. By defining t
Many security protocols rely on the assumptions on the physical properties in which its protocol sessions will be carried out. For instance, Distance Bounding Protocols take into account the round trip time of messages and the transmission velocity t
We consider the problem of approximating a two-dimensional shape contour (or curve segment) using discrete assembly systems, which allow to build geometric structures based on limited sets of node and edge types subject to edge length and orientation
In the pattern formation problem, robots in a system must self-coordinate to form a given pattern, regardless of translation, rotation, uniform-scaling, and/or reflection. In other words, a valid final configuration of the system is a formation that