ترغب بنشر مسار تعليمي؟ اضغط هنا

POSyTIVE -- a GRB population study for the Cherenkov Telescope Array (ICRC-2019)

347   0   0.0 ( 0 )
 نشر من قبل Iftach Sadeh
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the central scientific goals of the next-generation Cherenkov Telescope Array (CTA) is the detection and characterization of gamma-ray bursts (GRBs). CTA will be sensitive to gamma rays with energies from about 20 GeV, up to a few hundred TeV. The energy range below 1 TeV is particularly important for GRBs. CTA will allow exploration of this regime with a ground-based gamma-ray facility with unprecedented sensitivity. As such, it will be able to probe radiation and particle acceleration mechanisms at work in GRBs. In this contribution, we describe POSyTIVE, the POpulation Synthesis Theory Integrated project for very high-energy emission. The purpose of the project is to make realistic predictions for the detection rates of GRBs with CTA, to enable studies of individual simulated GRBs, and to perform preparatory studies for time-resolved spectral analyses. The mock GRB population used by POSyTIVE is calibrated using the entire 40-year dataset of multi-wavelength GRB observations. As part of this project we explore theoretical models for prompt and afterglow emission of long and short GRBs, and predict the expected radiative output. Subsequent analyses are performed in order to simulate the observations with CTA, using the publicly available ctools and Gammapy frameworks. We present preliminary results of the design and implementation of this project.



قيم البحث

اقرأ أيضاً

268 - T. Hassan , S. Bonnefoy , M. Lopez 2012
In the last few years, the Fermi-LAT telescope has discovered over a 100 pulsars at energies above 100 MeV, increasing the number of known gamma-ray pulsars by an order of magnitude. In parallel, imaging Cherenkov telescopes, such as MAGIC and VERITA S, have detected for the first time VHE pulsed gamma-rays from the Crab pulsar. Such detections have revealed that the Crab VHE spectrum follows a power-law up to at least 400 GeV, challenging most theoretical models, and opening wide possibilities of detecting more pulsars from the ground with the future Cherenkov Telescope Array (CTA). In this contribution, we study the capabilities of CTA for detecting Fermi pulsars. For this, we extrapolate their spectra with Crab-like power-law tails in the VHE range, as suggested by the latest MAGIC and VERITAS results.
The SST-1M telescope was developed as a prototype of a Small-Size-Telescope for the Cherenkov Telescope Array observatory and it has been extensively tested in Krakow since 2017. In this contribution we present validation of the Monte Carlo model of the prototype and expected performance in Krakow conditions. We focus on gamma/hadron separation and mono reconstruction of energy and gamma photon arrival direction using Machine learning methods.
Surveys open up unbiased discovery space and generate legacy datasets of long-lasting value. One of the goals of imaging arrays of Cherenkov telescopes like CTA is to survey areas of the sky for faint very high energy gamma-ray (VHE) sources, especia lly sources that would not have drawn attention were it not for their VHE emission (e.g. the Galactic dark accelerators). More than half the currently known VHE sources are to be found in the Galactic plane. Using standard techniques, CTA can carry out a survey of the region |l|<60 degrees, |b|<2 degrees in 250 hr (1/4th the available time per year at one location) down to a uniform sensitivity of 3 mCrab (a Galactic Plane survey). CTA could also survey 1/4th of the sky down to a sensitivity of 20 mCrab in 370 hr of observing time (an all-sky survey), which complements well the surveys by the Fermi/LAT at lower energies and extended air shower arrays at higher energies. Observations in (non-standard) divergent pointing mode may shorten the all-sky survey time to about 100 hr with no loss in survey sensitivity. We present the scientific rationale for these surveys, their place in the multi-wavelength context, their possible impact and their feasibility. We find that the Galactic Plane survey has the potential to detect hundreds of sources. Implementing such a survey should be a major goal of CTA. Additionally, about a dozen blazars, or counterparts to Fermi/LAT sources, are expected to be detected by the all-sky survey, whose prime motivation is the search for extragalactic dark accelerators.
The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine teles copes of different types to achieve unprecedented performance and energy coverage. The Gamma-ray Cherenkov Telescope (GCT) is one of the small-sized telescopes proposed for CTA to explore the energy range from a few TeV to hundreds of TeV with a field of view $gtrsim 8^circ$ and angular resolution of a few arcminutes. The GCT design features dual-mirror Schwarzschild-Couder optics and a compact camera based on densely-pixelated photodetectors as well as custom electronics. In this contribution we provide an overview of the GCT project with focus on prototype development and testing that is currently ongoing. We present results obtained during the first on-telescope campaign in late 2015 at the Observatoire de Paris-Meudon, during which we recorded the first Cherenkov images from atmospheric showers with the GCT multi-anode photomultiplier camera prototype. We also discuss the development of a second GCT camera prototype with silicon photomultipliers as photosensors, and plans toward a contribution to the realisation of CTA.
275 - S. Mangano 2017
The Cherenkov Telescope Array (CTA) will be the next generation of ground based gamma-ray telescopes allowing us to study very high energy phenomena in the Universe. CTA aims to gain about a factor of ten in sensitivity compared to current experiment s, extending the accessible gamma-ray energy range from a few tens of GeV to some hundreds of TeV. This increased gamma-ray source sensitivity, as well as the expected enhanced energy and spatial resolution, will allow exciting new insights in some key science topics. Additionally, CTA will provide a full sky-coverage by featuring the array located in two sites in the Northern and Southern hemispheres. This paper will describe the status of CTA and highlight some of CTAs key science themes; namely the origin of relativistic cosmic particles, the study of cosmological effects on gamma-ray propagation and the search for annihilating dark matter particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا