ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry breaking and skyrmionic transport in twisted bilayer graphene

68   0   0.0 ( 0 )
 نشر من قبل Shubhayu Chatterjee
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by recent low-temperature magnetoresistance measurements in twisted bilayer graphene aligned with hexagonal Boron Nitride substrate, we perform a systematic study of possible symmetry breaking orders in this device at a filling of two electrons per Moire unit cell. We find that the surprising non-monotonic dependence of the resistance on an out-of-plane magnetic field is difficult to reconcile with particle-hole charge carriers from the low-energy bands in symmetry broken phases. We invoke the non-zero Chern numbers of the twisted bilayer graphene flat bands to argue that skyrmion textures provide an alternative for the dominant charge carriers. Via an effective field-theory for the spin degrees of freedom, we show that the effect of spin Zeeman splitting on the skyrmion excitations provides a possible explanation for the non-monotonic magnetoresistance. We suggest several experimental tests, including the functional dependence of the activation gap on the magnetic field, for our proposed correlated insulating states at different integer fillings. We also discuss possible exotic phases and quantum phase transitions that can arise via skyrmion-pairing on doping such an insulator.



قيم البحث

اقرأ أيضاً

We derive the renormalization group equations describing all the short-range interactions in bilayer graphene allowed by symmetry and the long range Coulomb interaction. For certain range of parameters, we predict the first order phase transition to the uniaxially deformed gapless state accompanied by the change of the topology of the electron spectrum.
Twisted bilayer graphene (tBLG) has recently emerged as a platform for hosting correlated phenomena, owing to the exceptionally flat band dispersion that results near interlayer twist angle $thetaapprox1.1^circ$. At low temperature a variety of phase s are observed that appear to be driven by electron interactions including insulating states, superconductivity, and magnetism. Electrical transport in the high temperature regime has received less attention but is also highly anomalous, exhibiting gigantic resistance enhancement and non-monotonic temperature dependence. Here we report on the evolution of the scattering mechanisms in tBLG over a wide range of temperature and for twist angle varying from 0.75$^circ$ - 2$^circ$. We find that the resistivity, $rho$, exhibits three distinct phenomenological regimes as a function of temperature, $T$. At low $T$ the response is dominated by correlation and disorder physics; at high $T$ by thermal activation to higher moire subbands; and at intermediate temperatures $rho$ varies linearly with $T$. The $T$-linear response is much larger than in monolayer graphenefor all measured twist angles, and increases by more than three orders of magnitude for $theta$ near the flat-band condition. Our results point to the dominant role of electron-phonon scattering in twisted layer systems, with possible implications for the origin of the observed superconductivity.
115 - Minhao He , Yuhao Li , Jiaqi Cai 2020
A variety of correlated phases have recently emerged in select twisted van der Waals (vdW) heterostructures owing to their flat electronic dispersions. In particular, heterostructures of twisted double bilayer graphene (tDBG) manifest electric field- tunable correlated insulating (CI) states at all quarter fillings of the conduction band, accompanied by nearby states featuring signatures suggestive of superconductivity. Here, we report electrical transport measurements of tDBG in which we elucidate the fundamental role of spontaneous symmetry breaking within its correlated phase diagram. We observe abrupt resistivity drops upon lowering the temperature in the correlated metallic phases neighboring the CI states, along with associated nonlinear $I$-$V$ characteristics. Despite qualitative similarities to superconductivity, concomitant reversals in the sign of the Hall coefficient instead point to spontaneous symmetry breaking as the origin of the abrupt resistivity drops, while Joule heating appears to underlie the nonlinear transport. Our results suggest that similar mechanisms are likely relevant across a broader class of semiconducting flat band vdW heterostructures.
We study symmetry-broken phases in twisted bilayer graphene at small filling above charge neutrality and at Van Hove filling. We argue that the Landau functionals for the particle-hole order parameters at these fillings both have an approximate SU(4) symmetry, but differ in the sign of quartic terms. We determine the order parameter manifold of the ground state and analyze its excitations. For small fillings, we find a strong 1st-order transition to an SU(3)$otimes$U(1) manifold of orders that break spin-valley symmetry and induce a 3-1 splitting of fermionic excitations. For Van Hove filling, we find a weak 1st-order transition to an SO(4)$otimes$U(1) manifold of orders that preserves the two-fold band degeneracy. We discuss the effect of particle-hole orders on superconductivity and compare with strong-coupling approaches.
We study phenomena driven by electron-electron interactions in the minimally twisted bilayer graphene (mTBLG) with a perpendicular electric field. The low-energy degrees of freedom in mTBLG are governed by a network of one-dimensional domain-wall sta tes, described by two channels of one-dimensional linearly dispersing spin-1/2 fermions. We show that the interaction can realize a spin-gapped inter-channel charge density wave (CDW) state at low temperatures, forming a Coulomb drag between the channels and leaving only one charge conducting mode. For sufficiently high temperatures, power-law-in-temperature resistivity emerges from the charge umklapp scatterings within a domain wall. Remarkably, the presence of the CDW states can strengthen the charge umklapp scattering and induce a resistivity minimum at an intermediate temperature corresponding to the CDW correlation energy. We further discuss the conditions that resistivity of the network is dominated by the domain walls. In particular, the power-law-in-temperature resistivity results can apply to other systems that manifest topological domain-wall structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا