ﻻ يوجد ملخص باللغة العربية
Recently the charge density wave (CDW) in vanadium dichalcogenides have attracted increasing research interests, but a real-space investigation on the symmetry breaking of the CDW state in VTe2 monolayer is still lacking. We have investigated the CDW of VTe2 monolayer by low energy electron diffraction (LEED) and scanning tunneling microscope (STM). While the LEED experiments revealed a (4X4) CDW transition at 192+-2 K, our low-temperature STM experiments resolved the (4X4) lattice distortions and charge-density modulation in real space, and further unveiled a 1D modulation that breaks the three-fold rotational and mirror symmetries in the CDW state. In accordance with the CDW state at low temperature, a CDW gap of 12 meV was detected by scanning tunneling spectroscopy (STS) at 4.9 K. Our work provides real-space evidence on the symmetry breaking of the (4X4) CDW state in VTe2 monolayer, and implies there is a certain mechanism, beyond the conventional Fermi surface nesting or the q-dependent electron-phonon coupling, is responsible for the formation of CDW state in VTe2 monolayer.
Charge density waves in transition metal dichalcogenides have been intensively studied for their close correlation with Mott insulator, charge-transfer insulator, and superconductor. VTe2 monolayer recently comes into sight because of its prominent e
We present a combined experimental and theoretical study of monolayer VTe2 grown on highly oriented pyrolytic graphite by molecular-beam epitaxy. Using various in-situ microscopic and spectroscopic techniques, including scanning tunneling microscopy/
Despite the progress made in successful prediction of many classes of weakly-correlated topological materials, it is not clear how a topological order can emerge from interacting orders and whether or not a charge ordered topological state can exist
Via spin-polarized scanning tunneling microscopy, we revealed a long-range ordered spin density wave (SDW) for the first time on a Cr (001) surface, corresponding to the well-known incommensurate SDW of bulk Cr. It displays a (~ 6.0 nm) long-period s
In this paper, the completed investigation of a possible superconducting phase in monolayer indium selenide is determined using first-principles calculations for both the hole and electron doping systems. The hole-doped dependence of the Fermi surfac