ترغب بنشر مسار تعليمي؟ اضغط هنا

Prospects for Gravitational Wave Measurement of ZTFJ1539+5027

52   0   0.0 ( 0 )
 نشر من قبل Tyson Littenberg
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The short-period eclipsing binary ZTFJ1539+5027 discovered by Burdge et al. (2019) will be a strong gravitational-wave source for the Laser Interferometer Space Antenna (LISA). We study how well LISA will constrain the parameters of this system by analyzing simulated gravitational wave data, and find that LISA observations will significantly improve measurements of the distance and inclination of the source, and allow for novel constraints to be placed on the speed of gravity.



قيم البحث

اقرأ أيضاً

183 - M. Branchesi 2011
A pioneering electromagnetic (EM) observation follow-up program of candidate gravitational wave (GW) triggers has been performed, Dec 17 2009 to Jan 8 2010 and Sep 4 to Oct 20 2010, during the recent LIGO/Virgo run. The follow-up program involved gro und-based and space EM facilities observing the sky at optical, X-ray and radio wavelengths. The joint GW/EM observation study requires the development of specific image analysis procedures able to discriminate the possible EM counterpart of GW trigger from background events. The paper shows an overview of the EM follow-up program and the developing image analysis procedures as they are applied to data collected with TAROT and Zadko.
99 - D. Turpin , C. Wu , X. H. Han 2019
The second observational campaign of gravitational waves organized by the LIGO/Virgo Collaborations has led to several breakthroughs such as the detection of gravitational wave signals from merger systems involving black holes or neutrons stars. Duri ng O2,14 gravitational wave alerts were sent to the astronomical community with sky regions covering mostly over hundreds of square degrees. Among them, 6 have been finally confirmed as real astrophysical events. Since 2013, a new set of ground-based robotic telescopes called GWAC and its pathfinder mini-GWAC have been developed to contribute to the various challenges of themulti-messenger and time domain astronomy. The GWAC system is built up in the framework of the ground-segment system of the SVOM mission that will be devoted to the study of the multi-wavelength transient sky in the next decade. During O2, only the mini-GWAC telescopenetwork was fully operational. Due to the wide field of view and fast automatic follow-up capabilities of the mini-GWAC telescopes, they were well adapted to efficiently cover the sky localization areas of the gravitational wave event candidates. In this paper, we present the mini-GWAC pipeline we have set up to respond to the GW alerts and we report our optical follow-up observations of 8 GW alerts detected during the O2 run. Our observations provided the largest coverage of the GW localization areas in a short latency made by any optical facility. We found tens of optical transient candidates in our images, but none of those could be securely associated with any confirmed black hole-black hole merger event. Based on this first experience and the near future technical improvements of our network system, we will be more competitive to detect the optical counterparts from some gravitational wave events that will be detected during the upcoming O3 run, especially those emerging from binary neutron star mergers.
111 - S. Lacour , M. Nowak , P. Bourget 2018
SAGE (SagnAc interferometer for Gravitational wavE) is a fast track project for a space observatory based on multiple 12-U CubeSats in geostationary orbit. The objective of this project is to create a Sagnac interferometer with 73000 km circular arms . The geometry of the interferometer makes it especially sensitive to circularly polarized gravitational waves at frequency close to 1 Hz. The nature of the Sagnac measurement makes it almost insensitive to position error, allowing spacecrafts in ballistic trajectory. The light source and recombination units of the interferometer are based on compact fibered technologies, without the need of an optical bench. The main limitation would come from non-gravitational acceleration of the spacecraft. However, conditionally upon our ability to post-process the effect of solar wind, solar pressure and thermal expansion, we would detect gravitational waves with strains down to 10^-21 over a few days of observation.
We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrades astrophysical applications. We present a comprehensive study of the detectors tech nical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors. We go on to consider this upgrades implications for the astrophysical output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-mass black holes (BHs) out to a redshift of z~6 and would be sensitive to intermediate-mass black holes up to 2000 M_odot. The detection rate of merging BHs will increase by a factor of 18 compared to aLIGO. Additionally, for a given source the chirp mass and total mass can be constrained 2 times better than aLIGO and the effective spin 3-5 times better than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary neutron stars with an uncertainty solid angle 10 times smaller than that of aLIGO at 30 Hz, and 4 times smaller when the entire signal is used. LIGO-LF also significantly enhances the probability of detecting other astrophysical phenomena including the tidal excitation of neutron star r-modes and the gravitational memory effects.
With the detection of a binary neutron star system and its corresponding electromagnetic counterparts, a new window of transient astronomy has opened. Due to the size of the error regions, which can span hundreds to thousands of square degrees, there are significant benefits to optimizing tilings for these large sky areas. The rich science promised by gravitational-wave astronomy has led to the proposal for a variety of tiling and time allocation schemes, and for the first time, we make a systematic comparison of some of these methods. We find that differences of a factor of 2 or more in efficiency are possible, depending on the algorithm employed. For this reason, for future surveys searching for electromagnetic counterparts, care should be taken when selecting tiling, time allocation, and scheduling algorithms to maximize the probability of counterpart detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا