ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterisation of the Particle-Induced Background of XMM-Newton EPIC-pn: Short and Long Term Variability

264   0   0.0 ( 0 )
 نشر من قبل Esra Bulbul
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The particle-induced background of X-ray observatories is produced by Galactic Cosmic Ray (GCR) primary protons, electrons, and He ions. Events due to direct interaction with the detector are usually removed by on board processing. The interactions of these primary particles with the detector environment produce secondary particles that mimic X-ray events from celestial sources and are much more difficult to identify. The filter wheel closed data from the XMM-Newton EPIC-pn camera in small window mode (SWM) contains both the X-ray-like background events and the events due to direct interactions with the primary particles. From this data we demonstrate that X-ray-like background events are spatially correlated with the primary particle interaction. This result can be used to further characterise and reduce the non-X-ray background in silicon-based X-ray detectors in current and future missions. We also show that spectrum and pattern fractions of secondary particle events are different from those produced by cosmic X-rays.



قيم البحث

اقرأ أيضاً

Our understanding of the background of the EPIC/pn camera onboard XMM-Newton is incomplete. This affects the study of extended sources and can influence the predictions of the background of future X-ray missions. We provide new results based on the a nalysis of the largest data set ever used. We focus on the unconcentrated component of the EPIC/pn background - supposedly related to cosmic rays interacting with the telescope. We find that the out-field of view region of the pn detector is actually exposed to the sky. After cleaning from the sky contamination, the unconcentrated background does not show significant spatial variations and its time behaviour is anti-correlated with the solar cycle. We find a very tight, linear correlation between unconcentrated backgrounds detected in the EPIC/pn and MOS2 cameras: this permits the correct evaluation of the pn unconcentrated background of each exposure on the basis of MOS2 data, avoiding the use (as usual) of the contaminated pn regions. We find a tight, linear correlation between the pn unconcentrated background and the proton flux in the 630-970 MeV energy band measured by SOHO/EPHIN. Through this relationship we quantify the contribution of cosmic ray interactions to the pn unconcentrated background and we find a second source which contributes to the pn unconcentrated background for a significant fraction (30%-70%), that does not vary with time and is roughly isotropic. Hard X-ray photons of the CXB satisfy all the known properties of this new component. Our findings provide an important observational confirmation of simulation results on ATHENA.
159 - Markus Kuster 2002
The EPIC pn CCD camera on board of XMM-Newton is designed to perform high throughput imaging and spectroscopy as well as high resolution timing observations in the energy range of 0.1-15 keV. A temporal resolution of milliseconds or microseconds, dep ending on the instrument mode and detector, is outstanding for CCD based X-ray cameras. In order to calibrate the different observing modes of the EPIC pn CCD, XMM-Newton observations of the pulsars PSR B1509-58, PSR B0540-69 and the Crab were performed during the calibration and performance verification phase. To determine the accuracy of the on board clock against Coordinated Universal Time (UTC), PSR B1509-58 was observed simultaneously with XMM-Newton and RXTE in addition. The paper summarizes the current status of the clock calibration.
We report on a detailed spectral analysis of all the available XMM-Newton data of RX J1856.5-3754, the brightest and most extensively observed nearby, thermally emitting neutron star. Very small variations (~1-2%) in the single-blackbody temperature are detected, but are probably due to an instrumental effect, since they correlate with the position of the source on the detector. Restricting the analysis to a homogeneous subset of observations, with the source at the same detector position, we place strong limits on possible spectral or flux variations from March 2005 to present-day. A slightly higher temperature (kT~61.5 eV, compared to the average value kT~61 eV) was instead measured in April 2002. If this difference is not of instrumental origin, it implies a rate of variation of about 0.15 eV/yr between April 2002 and March 2005. The high-statistics spectrum from the selected observations is well fit by the sum of two blackbody models, which extrapolate to an optical flux level in agreement with the observed value.
73 - Y.H. Zhang 2005
Starting from XMM-Newton EPIC-PN data, we present the X-ray variability characteristics of PKS 2155-304 using a simple analysis of the excess variance, xs, and of the fractional rms variability amplitude, fvar. The scatter in xs and fvar, calculated using 500 s long segments of the light curves, is smaller than the scatter expected for red noise variability. This alone does not imply that the underlying process responsible for the variability of the source is stationary, since the real changes of the individual variance estimates are possibly smaller than the large scatters expected for a red noise process. In fact the averaged xs and fvar, reducing the fluctuations of the individual variances, chang e with time, indicating non-stationary variability. Moreover, both the averaged sqxs (absolute rms variability amplitude) and fvar show linear correlation with source flux but in an opposite sense: sqxs correlates with flux, but fvar anti-correlates with flux. These correlations suggest that the variability process of the source is strongly non-stationary as random scatters of variances should not yield any correlation. fvar spectra were constructed to compare variability amplitudes in different energy bands. We found that the fractional rms variability amplitude of the source, when significant variability is observed, increases logarithmically with the photon energy, indicating significant spectral variability. The point-to-point variability amplitude may also track this trend, suggesting that the slopes of the power spectral density of the source are energy-independent. Using the normalized excess variance the black hole mass of pks was estimated to be about $1.45 times 10^8 M_{bigodot}$. This is compared and contrasted with the estimates derived from measurements of the host galaxies.
118 - M. De Becker 2015
The long-term (over more than one decade) X-ray emission from two massive stellar systems known to be particle accelerators is investigated using XMM-Newton. Their X-ray properties are interpreted taking into account recent information about their mu ltiplicity and orbital parameters. The two targets, HD168112 and HD167971 appear to be overluminous in X-rays, lending additional support to the idea that a significant contribution of the X-ray emission comes from colliding-wind regions. The variability of the X-ray flux from HD168112 is interpreted in terms of varying separation expected to follow the 1/D rule for adiabatic shocked winds. For HD167971, marginal decrease of the X-ray flux in September 2002 could tentatively be explained by a partial wind eclipse in the close pair. No long-term variability could be demonstrated despite the significant difference of separation between 2002 and 2014. This suggests the colliding-wind region in the wide orbit does not contribute a lot to the total X-ray emission, with a main contribution coming from the radiative shocked winds in the eclipsing pair. The later result provides evidence that shocks in a colliding-wind region may be efficient particle accelerators even in the absence of bright X-ray emission, suggesting particle acceleration may operate in a wide range of conditions. Finally, in hierarchical triple O-type systems, thermal X-rays do not necessarily constitute an efficient tracer to detect the wind-wind interaction in the long period orbit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا