ﻻ يوجد ملخص باللغة العربية
After eleven gravitational-wave detections from compact-binary mergers, we are yet to observe the striking general-relativistic phenomenon of orbital precession. Measurements of precession would provide valuable insights into the distribution of black-hole spins, and therefore into astrophysical binary formation mechanisms. Using our recent two-harmonic approximation of precessing-binary signals~cite{Fairhurst:2019_2harm}, we introduce the ``precession signal-to-noise ratio, $rho_p$. We demonstrate that this can be used to clearly identify whether precession was measured in an observation (by comparison with both current detections and simulated signals), and can immediately quantify the measurability of precession in a given signal, which currently requires computationally expensive parameter-estimation studies. $rho_p$ has numerous potential applications to signal searches, source-property measurements, and population studies. We give one example: assuming one possible astrophysical spin distribution, we predict that precession has a one in $sim 25$ chance of being observed in any detection.
The generalized uncertainty principle, motivated by string theory and non-commutative quantum mechanics, suggests significant modifications to the Hawking temperature and evaporation process of black holes. For extra-dimensional gravity with Planck s
When two black holes merge, a tremendous amount of energy is released in the form of gravitational radiation in a short span of time, making such events among the most luminous phenomenon in the universe. Models that predict the peak luminosity of bl
The properties of precessing, coalescing binary black holes are presently inferred through comparison with two approximate models of compact binary coalescence. In this work we show these two models often disagree substantially when binaries have mod
Estimates of the source parameters of gravitational-wave (GW) events produced by compact binary mergers rely on theoretical models for the GW signal. We present the first frequency-domain model for inspiral, merger and ringdown of the GW signal from
As gravitational-wave detectors become more sensitive, we will access a greater variety of signals emitted by compact binary systems, shedding light on their astrophysical origin and environment. A key physical effect that can distinguish among forma