ﻻ يوجد ملخص باللغة العربية
The rapid damping of slow magnetoacoustic waves in the solar corona has been extensively studied in previous years. Most studies suggest that thermal conduction is a dominant contributor to this damping, albeit with a few exceptions. Employing extreme-ultraviolet (EUV) imaging data from SDO/AIA, we measure the damping lengths of propagating slow magnetoacoustic waves observed in several fan-like loop structures using two independent methods. The dependence of the damping length on temperature has been studied for the first time. The results do not indicate any apparent decrease in damping length with temperature, which is in contrast to the existing viewpoint. Comparing with the corresponding theoretical values calculated from damping due to thermal conduction, it is inferred that thermal conduction is suppressed in hotter loops. An alternative interpretation that suggests thermal conduction is not the dominant damping mechanism, even for short period waves in warm active region loops, is also presented.
We present the first Hinode/EIS observations of 5 min quasi-periodic oscillations detected in a transition-region line (He II) and five coronal lines (Fe X, Fe XII, Fe XIII, Fe XIV, and Fe XV) at the footpoint of a coronal loop. The oscillations exis
We report the first observation of multiple-periodic propagating disturbances along a fan-like coronal structure simultaneously detected in both intensity and Doppler shift in the Fe XII 195 A line with the EUV Imaging Spectrometer (EIS) onboard Hino
Rapidly decaying long-period oscillations often occur in hot coronal loops of active regions associated with small (or micro-) flares. This kind of wave activity was first discovered with the SOHO/SUMER spectrometer from Doppler velocity measurements
Employing Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) multi-wavelength images, we have presented coronal condensations caused by magnetic reconnection between a system of open and closed solar coronal loops. In this Letter, we repor
Rapidly decaying slow magnetoacoustic waves are regularly observed in the solar coronal structures, offering a promising tool for a seismological diagnostics of the coronal plasma, including its thermodynamical properties. The effect of damping of st