ﻻ يوجد ملخص باللغة العربية
The scattering of quasiperiodic waves for a two-dimensional Helmholtz equation with a constant refractive index perturbed by a function which is periodic in one direction and of finite support in the other is considered. The scattering problem is uniquely solvable for almost all frequencies and formulas of Breit-Wigner and Fano type for the reflection and transmission coefficients are obtained in a neighborhood of the resonance (a pole of the reflection coefficient). We indicate also the values of the parameters involved which provide total transmission and reflection. For some exceptional frequencies and perturbations (when the imaginary part of the resonance vanishes) the scattering problem is not uniquely solvable and in the latter case there exist embedded Rayleigh-Bloch modes whose frequencies are explicitly calculated in terms of infinite convergent series in powers of the small parameter characterizing the magnitude of the perturbation.
The properties of the natural modes in a dispersive stratified N-layer medium are investigated. The focus is on the (over)completeness properties of these modes. Also the distribution of the natural frequencies is considered. Both the degree of (over
Exact solutions of the linear water-wave problem describing oblique waves over a submerged horizontal cylinder of small (but otherwise fairly arbitrary) cross-section in a two-layer fluid are constructed in the form of convergent series in powers of
We consider a one-body spin-less electron spectral problem for a resonance scattering system constructed of a quantum well weakly connected to a noncompact exterior reservoir, where the electron is free. The simplest kind of the resonance scattering
We introduce and study the following model for random resonances: we take a collection of point interactions $Upsilon_j$ generated by a simple finite point process in the 3-D space and consider the resonances of associated random Schrodinger Hamilton
The focusing Nonlinear Schrodinger (NLS) equation is the simplest universal model describing the modulation instability (MI) of quasi monochromatic waves in weakly nonlinear media, and MI is considered the main physical mechanism for the appearence o