ﻻ يوجد ملخص باللغة العربية
The fast and accurate prediction of unsteady flow becomes a serious challenge in fluid dynamics, due to the high-dimensional and nonlinear characteristics. A novel hybrid deep neural network (DNN) architecture was designed to capture the unsteady flow spatio-temporal features directly from the high-dimensional unsteady flow fields. The hybrid deep neural network is constituted by the convolutional neural network (CNN), convolutional Long Short Term Memory neural network (ConvLSTM) and deconvolutional neural network (DeCNN). The flow around a cylinder at various Reynolds numbers and the flow around an airfoil at higher Reynolds number are carried out to establish the datasets used to train the networks separately. The trained hybrid DNNs were then tested by the prediction of the flow fields at future occasions. The predicted flow fields using the trained hybrid DNNs are in good agreement with the flow fields calculated directly by the computational fluid dynamic solver.
Convolutional neural networks (CNNs) have recently been applied to predict or model fluid dynamics. However, mechanisms of CNNs for learning fluid dynamics are still not well understood, while such understanding is highly necessary to optimize the ne
A novel hybrid deep neural network architecture is designed to capture the spatial-temporal features of unsteady flows around moving boundaries directly from high-dimensional unsteady flow fields data. The hybrid deep neural network is constituted by
Unsteady flow fields over a circular cylinder are trained and predicted using four different deep learning networks: convolutional neural networks with and without consideration of conservation laws, generative adversarial networks with and without c
Reynolds-averaged Navier-Stokes (RANS) equations are presently one of the most popular models for simulating turbulence. Performing RANS simulation requires additional modeling for the anisotropic Reynolds stress tensor, but traditional Reynolds stre
This paper proposes a new data assimilation method for recovering high fidelity turbulent flow field around airfoil at high Reynolds numbers based on experimental data, which is called Proper Orthogonal Decomposition Inversion (POD-Inversion) data as