ﻻ يوجد ملخص باللغة العربية
We prove that for the $d$-regular tessellations of the hyperbolic plane by $k$-gons, there are exponentially more self-avoiding walks of length $n$ than there are self-avoiding polygons of length $n$, and we deduce that the self-avoiding walk is ballistic. The latter implication is proved to hold for arbitrary transitive graphs. Moreover, for every fixed $k$, we show that the connective constant for self-avoiding walks satisfies the asymptotic expansion $d-1-O(1/d)$ as $dto infty$; on the other hand, the connective constant for self-avoiding polygons remains bounded. Finally, we show for all but two tessellations that the number of self-avoiding walks of length $n$ is comparable to the $n$th power of their connective constant. Some of these results were previously obtained by Madras and Wu cite{MaWuSAW} for all but finitely many regular tessellations of the hyperbolic plane.
We study the connective constants of weighted self-avoiding walks (SAWs) on infinite graphs and groups. The main focus is upon weighted SAWs on finitely generated, virtually indicable groups. Such groups possess so-called height functions, and this p
Expected ballisticity of a continuous self avoiding walk on hyperbolic spaces $mathbb{H}^d$ is established.
The connective constant $mu(G)$ of a quasi-transitive graph $G$ is the asymptotic growth rate of the number of self-avoiding walks (SAWs) on $G$ from a given starting vertex. We survey several aspects of the relationship between the connective consta
The connective constant $mu(G)$ of a graph $G$ is the asymptotic growth rate of the number $sigma_{n}$ of self-avoiding walks of length $n$ in $G$ from a given vertex. We prove a formula for the connective constant for free products of quasi-transiti
Let $G$ be an infinite, vertex-transitive lattice with degree $lambda$ and fix a vertex on it. Consider all cycles of length exactly $l$ from this vertex to itself on $G$. Erasing loops chronologically from these cycles, what is the fraction $F_p/lam